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Variational autoencoder for design of 
synthetic viral vector serotypes

Suyue Lyu    , Shahin Sowlati-Hashjin     & Michael Garton     

Recent, rapid advances in deep generative models for protein design 
have focused on small proteins with lots of data. Such models perform 
poorly on large proteins with limited natural sequences, for instance, 
the capsid protein of adenoviruses and adeno-associated virus, which 
are common delivery vehicles for gene therapy. Generating synthetic 
viral vector serotypes could overcome the potent pre-existing immune 
responses that most gene therapy recipients exhibit—a consequence of 
previous environmental exposure. We present a variational autoencoder 
(ProteinVAE) that can generate synthetic viral vector serotypes without 
epitopes for pre-existing neutralizing antibodies. A pre-trained protein 
language model was incorporated into the encoder to improve data 
efficiency, and deconvolution-based upsampling was used for decoding 
to avoid degenerate repetition seen in long protein sequence generation. 
ProteinVAE is a compact generative model with just 12.4 million parameters 
and was efficiently trained on the limited natural sequences. Viral protein 
sequences generated were used to produce structures with thermodynamic 
stability and viral assembly capability indistinguishable from natural 
vector counterparts. ProteinVAE can be used to generate a broad range of 
synthetic serotype sequences without epitopes for pre-existing neutralizing 
antibodies in the human population, effectively addressing one of the 
major challenges of gene therapy. It could be used more broadly to generate 
different types of viral vector, and any large, therapeutically valuable 
proteins, where available data are sparse.

Gene therapy is a powerful approach to treating—even curing—genetic 
disease, by the introduction of new genetic material into a patient that 
modifies their cell function. There are currently 13 United States Food 
and Drug Administration-approved gene therapies1, perhaps most 
notably a treatment for spinal muscular atrophy2, which cannot fail to 
impress for its dramatic effect on a horrific disease that ravages infants 
and devastates their families. These successes have generated much 
optimism that gene therapy can be applied to the many thousands 
of genetic diseases that afflict many tens of millions of people world-
wide3. However, the delivery of therapeutically meaningful amounts of 
new genetic material to patient cells remains highly challenging. Chief 
among these challenges is the immunogenicity of effective delivery 

vectors4–6. Adenoviral (AdV) vectors are currently the most popular 
vector used for vaccines and cancer therapy delivery, with 575 cur-
rently in clinical trial7. AdVs have many advantages, including broad 
tropism profiles, lack of host genome integration, high transduction 
efficiency (60–80%) of most dividing and quiescent cells and large 
payload capacity (~38 kilobases)8–10. Despite this, substantial hurdles 
remain in deploying them to correct genetic disease, as the prevalence 
of pre-existing immunity against common human AdV serotypes is 
very high worldwide. This immunity is primarily driven by neutralizing 
antibodies, which have prevalence rates for the most widely used HAd5 
vector ranging from 35% of the population in the United States to more 
than 90% in Cote d’Ivoire11. In a European study, 74% of children’s sera 
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information was integrated to obtain a refined protein-level repre-
sentation. Instead of training from scratch on the limited hexon 
data, the parameters in the pre-trained model were kept fixed. This 
permitted use of the high-quality amino-acid-level embeddings and 
more efficient training on a small dataset. ProtBert was chosen as 
the pre-trained protein language model, as it achieved the highest 
accuracy in prediction tasks among three models trained on sequence 
length ranges (2,048 amino acids) that cover hexons in the ProtTrans 
article30. ProtTrans30 was one of the first efforts to apply language 
models on protein sequence data. ProtTrans30 was highly cited, as its 
models were commonly used as benchmarks for both generation and 
predictions tasks. ProteinVAE can be easily adapted for alternative 
language models to extract embeddings.

For the decoder, a non-autoregressive processing method was 
used to avoid degenerate repetition commonly seen in generation of 
long sequences31,32. Inspired by HybridVAE33, deconvolutional layers 
(Extended Data Fig. 1b) were designed to upsample the bottleneck rep-
resentation, protein-level representation, to amino-acid-level represen-
tation M of size L × dde, where L means sequence length, and dde means 
decoder hidden dimension. Specifically, a convolution layer with kernel 
size of 1 × 1 separated deconvolutional layers with a bigger 3 × 3 kernel34. 
This resulted in a reduction of the number of parameters needed. Next, 
a position-wise multi-head attention mechanism was used to capture 
the dependencies between amino acid usage at different positions, 
which allowed effective modelling of the long-distance interactions. 
A linear layer was used to convert the hidden representation M to the 
logits matrix P. Another multi-head attention module is designed to 
adjust for amino acid preference in different viruses35, and, therefore, 
it is done across different amino acid channels. Some initial results of 
the model generated more helix sequences than strand (Extended Data 
Fig. 2). Combined with the consensus that strand proteins are harder to 
design, a reweighted cross-entropy loss that assigned higher penalty 
to the strand positions, predicted by SPOT-1D (ref. 36), was used in the 
final model.

ProteinVAE was trained on all hexon proteins in the UniprotKB26,37 
database that are annotated to be full-length. Since the desired output 
is full-length hexons that include all domains, sequences with incom-
plete domains were removed. Sequences with non-standard amino 
acids were also removed. The resultant dataset included 711 hexon 
sequences with length ranging from 893 to 992 amino acids.

Experimental setup for comparison with previous methods
To evaluate sequence generation, 7,000 samples were generated by 
sampling a Gaussian distribution with mean of 0 and standard devia-
tion of 4 from the latent space and decoded by the ProteinVAE decoder. 
The top 1,000 sequences with highest average positional probability 
(APP) were selected. APP is calculated by averaging the token prob-
ability across all positions in a sequence, which reflects the model 
confidence level for the generated sequence. To benchmark hexon 
sequence generating capability against the current state-of-the-art, 
two recently published large transformer-based language models, 
ProtGPT2 (ref. 38) (738 million parameters) and ProGen2 (151 million 
parameters)20, were selected and fine-tuned on the hexon dataset. 
ProtGPT2 was trained with a byte-pair encoding tokenizer, and Pro-
Gen2 was trained with single-amino-acid tokens. ESM-InverseFolding 
(ESM-IF1)39, a competitive model, was used as a representative model 
for the fixed-backbone approach. ESM-IF1 was not fine-tuned due to 
the lack of structural data for most sequences in the training dataset. 
Other fixed-backbone methods required prohibitively large computa-
tional resources, for example, see refs. 40,41. Detailed fine-tuning and 
generation processes are described in the Methods. Sequence genera-
tion was done only once in each model. Another previously published 
multi-layer-perceptron-based VAE (MLP-VAE) model42 was considered 
for a benchmark. The MLP-VAE model (12.7 million parameters) was 
trained on one-hot-encoded multiple sequence alignment (MSA) of 

samples contained neutralizing antibodies for at least one serotype12. 
Another major related issue is that repeated vector administration is 
precluded even among patients without environmental exposure, as 
different serotypes are needed for each round13. Anti-AdV antibodies 
prevent AdV vectors from transducing their targets, leading to ineffec-
tive treatment14. Strategies to address this include using rare serotypes, 
non-human AdV vectors and AdV capsid engineering. These have met 
with limited success and do not adequately address the challenge of 
immunogenicity arising from repeated administration. As the major 
capsid protein, hexons were identified as the primary target of neu-
tralizing antibodies13. Hexon modifications can assist evasion of the 
serotype-specific neutralizing antibodies4. However, changing the 
entire solvent-exposed surface, such that all potential neutralizing 
antibody epitopes are removed, involves introducing a large number 
of mutations. Introducing these many mutations randomly or using 
rational structure-based design cannot be done without catastrophic 
loss of protein function15,16.

We hypothesized that machine learning could be used to generate 
dramatically different hexon proteins without impacting protein fold-
ing, particle assembly or cell transducing function. Here, we present a 
generative model capable of designing synthetic AdV vector serotypes 
that have never been surveilled by an animal or human immune sys-
tem and therefore are predicted to avoid pre-existing AdV immunity. 
Deep learning models have been recently developed for de novo pro-
tein design17–24. However, these models were trained on much larger 
datasets. For example, ProteinGAN, the first Generative Adversarial 
Networks (GAN) model designed for protein sequence generation, 
comprised 60 million trainable parameters and was trained on 16,706 
unique malate dehydrogenase sequences21. As only 88 serotypes of 
human adenovirus are currently known25, the number of available 
unique hexon sequences is limited to 711 unique full-length sequences 
(UniprotKB database26). Due to limited available training data, models 
with a large number of parameters can be prone to overfitting, and a 
smaller model can be more appropriate27. Hexon sequences average 
938 amino acids in length, suggesting a high likelihood of inter-residue 
dependency at longer distances. No previous work has reported gen-
erating sequences of comparable length. This, combined with the 
small dataset, required development of a small but expressive model 
that could be trained efficiently. To solve this, a pre-trained protein 
language model for amino-acid-level embedding was used, allowing 
transfer of knowledge learned by the pre-trained model on a large pro-
tein database. A variational autoencoder (VAE) framework was used to 
obtain an informative and structured latent space, and thereby convert 
the discrete protein sequence space to a continuous space for ease of 
sampling and manipulation. A special bottleneck attention module28 
was used in the encoder to map the high-quality amino-acid-level 
embedding—generated by the pre-trained model—to the latent space. 
A non-autoregressive deconvolution-based decoder was designed for 
sequence reconstruction from the latent variable. This model, which we 
are calling ProteinVAE, was able to generate high-quality, structurally 
stable hexon sequences with only 12.4 million parameters. Neutralizing 
antibody accessible hexon surfaces differed from natural hexons to the 
extent that they could be classified as new serotypes that are predicted 
to avoid pre-existing immunity.

Results
Generative VAE model for large proteins with limited data
To address the limited amount of hexon data available, a model that 
can be effectively trained on small datasets is required. A pre-trained 
protein language model29 was incorporated in the encoder, as illus-
trated in Fig. 1. A convolutional neural network was used to extract 
a feature vector from the hidden amino-acid-level representation 
produced by the pre-trained protein language model (Extended Data 
Fig. 1a). Using the convolutional neural network-extracted feature 
vector as the query in the bottleneck attention module28, global-level 
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the hexon dataset, generated only 40 unique sequences with 1,000 
randomly sampled latent vectors and was therefore not included in 
the comparison (Supplementary Note 1 and Supplementary Table 1).  
Benchmarking using the model developed by Ogden et al.15 was con-
sidered, but was not possible due to the lack of publicly available 
hexon fitness landscape data. Generation with fine-tuned ProtBert30  
was also attempted; results can be found in Supplementary Note 2, 
Supplementary Table 2 and Supplementary Figs. 1 and 3–9.

ProteinVAE learns functional hexon-defining characteristics
To assess ProteinVAE’s capacity to learn the distribution of natural 
hexon sequences, several metrics were computed comparing both local 
and whole-sequence-level patterns. Local amino acid pair association 
score43 was calculated for all possible combinations in natural and 
model-generated sequences. (Fig. 2a). Similarity of ProteinVAE and 
ProtGPT2 scores to natural indicated that these models have learned 
the local amino acid patterns of natural hexons. In contrast, almost all 
amino acid pairs occur at a further distance than randomly shuffled 
sequences for ESM-IF1-generated sequences—substantially differ-
ent from natural sequences. Lower level of association was seen in 
ProGen2-generated sequences, as indicated by the overall low abso-
lute value, which also differs from the natural pattern. In addition, 
ProteinVAE-generated sequences also maintained a similar sequence 
profile in all seven hypervariable loops (Extended Data Fig. 3). Global 
sequence features of individual generated sequences were evaluated. 
Fine-tuned ProtGPT2 and ProGen2 perplexity levels were used to quan-
tify the resemblance of generated to natural hexon sequence features 
(Fig. 2b), as a large language model (LLM) evaluator has demonstrated 

its potential in approximating human judgement in natural language 
processing tasks44. The number on the x axis is the average perplexity 
for each group. Lower perplexity means better fit in the training data 
of natural hexons. Natural sequences achieved lowest perplexity in 
both LLMs, while sequences with only 5% random mutations received 
considerably higher perplexity. This demonstrated that both models 
had learned the natural sequence profile and were sensitive enough 
to detect global sequence pattern changes. Sequences generated 
by fine-tuned ProtGPT2 and ProGen2 received low perplexity when 
evaluated by each respective LLM due to the known self-enhancement 
bias44–46. Excluding each model’s self-evaluation, ProteinVAE-generated 
sequences received lower perplexity than the sequences with 5% ran-
dom mutations. Another traditional metric, the HMMER score47, was 
computed to assess the domain-level likelihood of each individual 
sequence containing the hexon domain (Fig. 2c). The percentage of 
hits and the average score are labelled next to the model name. Scores 
were normalized by the highest score seen in natural sequences. Higher 
score means higher likelihood of a sequence containing a domain. All 
natural sequences were identified as high-scoring hits in both hexon 
domains, whereas in sequences containing 5% random mutations, 
almost no hits were found. ProteinVAE- and ProtGPT2-generated 
sequences had the highest average likelihood to contain the hexon 
N-terminal domain, while ProtGPT2-generated sequences scored the 
highest for the C-terminal domain. ESM-IF1-generated sequences are 
likely to contain only the hexon N-terminal domain, as no hits were 
identified in the HMMER search for the hexon C-terminal domain. Next, 
the generated sequences were assessed for preservation of the natural 
evolutionary profile. Shannon entropies were computed for all valid 
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z'. Self-attention along the length dimension is used to capture long-distance 
dependency. A linear layer converts hidden representation M to logits P, and 
another self-attention along the channel dimension is used to adjust for amino 
acid usage difference. The final logits are passed through a softmax layer to 
obtain probabilities, with the highest probability amino acid being selected as the 
prediction at each position. den, latent dimension; dpre, hidden dimension of pre-
trained language model; CNN, convolutional neural network; L, sequence length.
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positions in the MSA of natural and generated sequences (Fig. 2d). 
The position of invalid columns was visualized with the location of 
hypervariable regions (HVRs) in Fig. 2e. Shannon entropy of Protein-
VAE (Pearson’s r = 0.88)-generated sequences presented peaks and 
valleys at similar locations to the natural sequences. Invalid columns 
in ProteinVAE MSA appeared mostly in the HVRs, which is similar to the 
natural MSA. Together, they suggested that ProteinVAE has learned the 

underlying sequence distribution. Both ProtGPT2 and ProGen2 have a 
high number of invalid columns, suggesting their generated sequences 
had more insertion or deletion mutations distributed throughout 
the sequence (Fig. 2e). Different sequence variability patterns were 
also present in ProtGPT2 (Pearson’s r = 0.7)-generated and ProGen2 
(Pearson’s r = 0.37)-generated sequences. Notably, ESM-IF1-generated 
sequences exhibited different characteristics in the N-terminal and 
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Fig. 2 | Comparing sequential and structural characteristics with natural 
hexons. a, Amino acid pair association scores for all ProtGPT2-generated, 
ProteinVAE-generated and natural sequences. Negative values (blue) indicate 
shorter distances compared with random shuffled sequences. b, Sequence 
perplexity (log10 transformed) from fine-tuned ProtGPT2 (left) and ProGen2 
(right). c, HMMER score for the hexon N-terminal (left) and C-terminal (right) 
domains. In panels b and c, all natural sequences were used for analysis (n = 711). 
For all models, the same ratios of higher quality sequences were compared 
(ProteinVAE: n = 1,000; all other models: n = 214). Each box-plot shows the first 
and third quartiles, central line is median and whiskers show range of data with 
outliers displayed individually. d, Shannon entropy for natural hexons and 
sequences generated by all models in MSA columns with above 20% occupancy in 

each dataset. A higher value reflects higher sequence variability across samples. 
e, Positions of invalid columns in MSA (less than 80% occupancy) in the reference 
sequence of human adenovirus serotype 5 hexon (P04133). Colour indicates 
number of invalid columns (log transformed). Red squares show the location 
of HVRs. f, Helix and strand ratio in natural and generated hexons. Pink shade 
in all plots shows the area in the bi-variate normal distribution fitted on natural 
samples (α = 0.05). In generated sequence plots, grey points represent outliers, 
while coloured points are sequences considered within the natural distribution. 
g, SASA for all amino acids in ProteinVAE-generated and natural proteins. 
Asterisk indicates amino acids with significantly different (unpaired two-sided 
Welch t-test, α = 0.05; P value: Glu, 0.037; Asn, 1.13 × 10−7) SASA values between 
two groups.
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C-terminal domains, with poor resemblance to natural profile in the 
latter (probably because training length is only 500 amino acids39). 
Hexon sequence length added difficulties to its modelling. Generating 
long (~1,000s of tokens) and coherent texts in a specific small domain 
is challenging even for fine-tuned LLMs such as GPT2 (refs. 31,32), and 
generated texts typically suffer from degenerate repetition. To evaluate 
whether the generated sequences can avoid the degenerate repetition 
artifacts, while capturing certain local repetitive patterns observed in 
natural sequences48, the number of repeated amino acids was calculated 
in a fixed-length window sliding across all possible positions in each 
sequence (Supplementary Fig. 1 and Supplementary Note 3). Regardless 
of the window size used, ProteinVAE (Pearson’s r = 0.92) samples closely 
follow the repetitiveness trend of the natural, while ESM-IF1 showed 
a different repetition pattern (Pearson’s r = 0.13). Notably, repetition 
did not increase as the generation progressed in fine-tuned ProtGPT2 
(Pearson’s r = 0.54) and ProGen2 (Pearson’s r = 0.56) samples, but they 
did not maintain the local repetition patterns.

ProteinVAE learns hexon structural characteristics
To evaluate structural characteristics, first Q3 secondary structure 
was predicted for all natural and generated sequences with SPOT-1D  
(ref. 36). Figure 2f shows that strand and helix ratio is correlated (Pear-
son’s r = −0.86) in natural hexons. A similar trend existed in sequences 
generated by all models, while a weaker correlation was observed in 
ESM-IF1 (Pearson’s r = −0.65) (Fig. 2f). To further analyse secondary 
structure profile, a bi-variate normal distribution was fitted on the natu-
ral set, and out-of-distribution samples were identified in the gener-
ated sequences (α = 0.05). ProteinVAE (95.85%) and ProtGPT2 (93.93%) 
samples share similar secondary structure composition with natural 
hexons (in-distribution samples) (Fig. 2f). Solvent accessible surface 
area (SASA) profiles were computed for all 20 amino acids in 100 ran-
domly selected sequences from ProteinVAE samples and natural hexons  
(Fig. 2g). SASA was calculated from Alphafold2 (ref. 49)-predicted 
structures (Supplementary Note 4). SASA profiles for 18 amino acids 
are statistically indistinguishable in natural and ProteinVAE-generated 
sequences (Methods). Two amino acids (Glu, Asn) have significantly 
different SASA values, but their surface exposure character is retained. 
This comparison further supports that ProteinVAE-generated 
sequences are structurally similar to natural hexons; it also indicates 
that the ProteinVAE model has learned the physical–chemical proper-
ties of each amino acid to some extent. Only ProteinVAE-generated 
sequences were analysed due to limited computing resources.

ProteinVAE generates diverse hexon sequences
To visualize sequence diversity, an equal number of natural and gener-
ated sequences by all models were clustered at different thresholds. 
ProtGPT2- and ProGen2-generated samples produced many clusters 
even at extremely low identity threshold. Combining this trend with the 
high ratio of invalid columns in their MSA (Fig. 2e), it is likely that Prot-
GPT2 and ProGen2 inserted sequence fragments from the vast Uniref50 
database that they were pre-trained on38. ProteinVAE-generated 
sequences closely resemble sequence patterns found in natural hexon 
populations. Notwithstanding, they consistently had more clusters 
and higher diversity than natural sequences at all thresholds (Fig. 3a). 
The ESM-IF1 model reached a higher level of diversity. This is due to 
the lower quality in the C-terminal half of the sequence, as this section 
of ESM-IF1-generated sequences were not likely to contain the hexon 
C-terminal domain and had higher entropy (Fig. 2c,d). Since the goal is 
to generate functional hexons that are biologically relevant, the ability 
of the model to diversify the sequences, while keeping high structure 
resemblance towards natural hexon protein, is critical. Sequence diver-
sity was assessed for sequences with similar secondary structure ratios 
to natural sequences (in-distribution samples in Fig. 2f). Sequences with 
less than 80% target and query coverage when aligned to their closest 
natural sequence were removed. All in-distribution ProteinVAE samples 

satisfy this sequence-level constraint, as they have been trained only 
on hexon sequences. In contrast, only 37.85% and 12.15% of samples 
are left in the ProtGPT2 and ProGen2 groups, respectively, which fur-
ther supports the argument that ProtGPT2 and ProGen2 incorporate 
non-hexon fragments. While the absolute sequence identities (seqIDs) 
of ProteinVAE samples only cover the higher end of the range seen in 
other samples, all analysed ProteinVAE in-distribution samples have 
high structural similarity towards natural (Fig. 3b). Only the top 1,000 
sequences with highest average positional probability were selected 
from 7,000 sequences generated by ProteinVAE, which ensures high 
sequence quality at the cost of lower diversity. There was no sequence 
in ESM-IF1-generated samples that satisfied the screening conditions, 
which is probably due to the low C-terminal sequence quality. To 
directly evaluate sequence diversity against structural similarity, we 
plotted the Pareto frontier of all generated samples, respectively, in 
Fig. 3c. In the comparable range, ProteinVAE produced samples more 
diverse without disruption of structural profile.
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Fig. 3 | Comparing sequence diversity against sequence quality across 
models. a, Number of clusters at different identity thresholds. b, Scatter plot 
for sequence diversity and secondary structure similarity. The x axis is the 
maximum seqID on all aligned pairs. The y axis is the maximum percentage 
identity of three-state secondary structure on all aligned pairs of generated 
and natural sequences. Sequences closer to the top-left corner are ideal, as they 
are structurally similar to natural protein but more novel in sequence. c, Pareto 
frontiers: the optimal sequences designed by each model are highlighted along 
the respective frontier.
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Molecular dynamics simulations confirm stable structure and 
interfaces
Molecular dynamics was used to assess structural stability. Natural 
hexon conformational sampling was obtained by clustering on natural 
sequences at 90% seqID and collecting the representative sequence 
from each cluster with more than ten sequences (13 clusters produced 
13 representative sequences). A detailed generation process can be 
found in the Methods.

Three-dimensional structures for natural and model-generated 
sequences were predicted with Alphafold2. Hexons form homotrim-
ers in the adenovirus capsid with extensive inter-subunit interactions 
(Extended Data Fig. 4). Thirteen representative natural hexon mono-
mers consist of ~18% helix and 28% ꞵ-strand, with turns and coils mak-
ing up the remaining 54% of the structure50. A comparison between 
the representative structure of natural hexon (A4ZKL6) and three 
ProteinVAE-designed hexons (with 91.5%, 85.6% and 75.4% identity to 
the closest natural hexon) indicated that they maintained the mor-
phology and symmetry of the natural counterpart (Extended Data 
Fig. 4). All predicted structures were subject to 100 ns molecular 
dynamics, where root-mean-squared deviation (r.m.s.d.) has stabi-
lized (Extended Data Fig. 5 and Supplementary Fig. 2). R.m.s.d. reveals 
that ProteinVAE-generated structures had a range similar to natural 
hexons (natural hexon: 1.14–4.53 Å; ProteinVAE samples: 1.21–6.58 Å), 
while the samples generated by ProtGPT2 (1.46–14.67 Å) and ProGen2 
(1.56–8.67 Å) showed larger r.m.s.d. values (Extended Data Fig. 5).  
Root-mean-squared fluctuation (r.m.s.f.) to analyse local structural 
flexibility (Fig. 4) showed that ProGen2 introduced mutations that sig-
nificantly increased flexibility in regions that were comparatively rigid 
in natural sequences, while those introduced by ProteinVAE did not. 
ProtGPT2 and ProGen2 also inserted long, highly flexible, potentially 
destabilizing fragments that are not homologous to natural hexons 
(Extended Data Fig. 6). As observed in natural MSA, the structurally 
exposed regions have higher evolutionary rate, and they are likely to 
be tolerant of mutations51,52. The same trend has been observed with 
artificially introduced mutations15. Mutations in ProteinVAE samples 
(Fig. 4d) are more likely to occur in these naturally exposed regions 
(Fig. 4e,f). ProteinVAE was able to generate diverse molecular dynamics 
stable sequences, with the most novel sequence containing 291 amino 
acids different from its closest natural sequence with 39.62% viral 
surface area changed. This degree of novelty illustrated ProteinVAE’s 
generative capacity, while the considerably changed viral surface could 
increase chances of evading pre-existing serotype-specific antibodies.

ProteinVAE produces novel synthetic human AdV serotypes
To distinguish human adenovirus serotypes from generated 
sequences, a simple logistic regression classifier was trained from 
the encoder embeddings of all training data (364 human adeno-
virus hexon sequences and 347 non-human adenovirus hexon 
sequences). The validation area under the receiver operating char-
acteristic curve of the trained classifier is 0.97 (Extended Data 
Fig. 7a and Supplementary Note 5), and the validation F1 score is 
0.94. Sequences generated from each cluster were encoded and 
classified (Extended Data Fig. 7b). The percentage of generated 
sequences classified as human adenovirus hexon correlated with 
that of natural sequences in each cluster (Pearson’s r = 0.81). Phy-
logenetic relationships were analysed between the 46 predicted 
human adenovirus hexon sequences, 65 hexons from unique human 
adenovirus serotypes in the training set and 20 randomly selected 
hexons with non-human host (Fig. 5a and Supplementary Note 6).  
A majority of the generated hexon sequences reside within the phylo-
genetic clades of human adenovirus species B and D, while preserving 
a substantial evolutionary divergence in relation to known serotypes. 
In addition, six generated sequences are separated from clades of 
known human species, but they still reside in the primate adenovirus 
clade (highlighted with a red curve in Fig. 5a). This suggested that they 

might represent novel human adenovirus species, or they might also 
be primate adenovirus hexons similar to human adenovirus.

Generated sequences were then aligned with every natural human 
adenovirus hexon. Amino acid divergence in loop 1 and loop 2 was 
calculated for each pair of sequences (Fig. 5b,c). These loops are con-
sidered to be the primary serotype determining hexon regions53. Gener-
ated sequences diverged more than 4.2% in loop 1 and more than 1.2% in 
loop 2 from any known serotypes, which defines them as hexons from 
new human adenovirus serotypes (Supplementary Note 7)53.

ProteinVAE latent space allows interpolation
One benefit of using the VAE-based model is the ease of sampling pro-
vided by the structured VAE latent space (‘Discussion’). To validate 
that evolutionary relationships and sequence similarities have been 
captured in the latent vectors, the ten largest clusters (at 90% seqID) 
were plotted in dimension-reduced hidden space (principal compo-
nent analysis obtained) (Fig. 6a). Multiple clusters can be found in 
the hidden space distinctly separated. ProteinVAE hidden space also 
appears around the mean of 0 with no obvious hole. Next, interpola-
tion was done between hexons from two interchangeable adenovirus 
serotypes, AdV2 and AdV5 (ref. 54). In total, 1,000 vectors were lin-
early interpolated between AdV5 and AdV2 hexon hidden vectors in 
ProteinVAE latent space, since this is a common approach to utilize 
VAE structure latent space55,56. These were decoded to sequences. As 
a control, another method55 was implemented to sample between 
AdV5 and AdV2 hexon sequences directly. Both the control and latent 
interpolation achieved monotonic changes in Hamming distance  
(Fig. 6c,d). However, ProteinVAE latent interpolation allowed for gen-
eration of natural-resembling sequences, as indicated by higher average 
positional probability (Fig. 6b).

Discussion
ProteinVAE can learn the intrinsic relationships of long protein 
sequences from a limited number of samples and generated sequences 
which could be used to generate molecular dynamics stable struc-
tures. In addition, generated sequences are more diverse than natu-
ral sequences, capable of forming more clusters at the same identity 
threshold. Some ProteinVAE-generated hexons can be classified as 
new human adenovirus serotypes with imputed serotyping, providing 
meaningful candidate sequences for therapeutic applications.

Considerable efforts have been made toward computationally 
expanding known protein families with novel sequences. In conven-
tional bioinformatics, hidden Markov models21,57 were used with limited 
success due to their inability to learn the higher-order relationships in 
natural protein families.

More recently, deep learning models, including GANs21,58, 
VAEs19,22,23,42 and large generative protein language models20,38,59, have 
been implemented to learn the complex constraints in biological 
sequence design. These methods have mostly focused on shorter pro-
tein sequences with many members from the same family. Because of 
this, they tend to perform poorly on large proteins with few members, 
such as AdV hexons. Challenges associated with generating diverse 
hexon sequences were demonstrated with the unsatisfactory perfor-
mance of a fixed-backbone design model (ESM-IF1) and two recently 
published LLMs (ProtGPT2 and ProGen2) fine-tuned on the hexon 
dataset. Although the competitive fixed-backbone design method 
(ESM-IF1) showed more promising results on smaller proteins, with 
the current training sequence length range (500 amino acids) ESM-IF1 
cannot generate high-quality hexon sequences at the C terminus. In 
addition, these models require significantly higher GPU memory for 
training and generating long sequences, as the inter-residue distance 
information requires a quadruple amount of memory for processing 
as the length increases. For instance, 24 GB of GPU memory is needed 
to generate one hexon sequence using ESM-IF1, while only 21 GB of 
GPU memory is needed to generate 1,000 hexon sequences in parallel 
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using ProteinVAE. For the LLMs, the fine-tuned ProtGPT2 performed 
better than the fine-tuned ProGen2 model. This is probably due to the 
higher number of parameters in the ProtGPT2 model. Larger ProGen2 
models might generate better sequences, but even fine-tuning them is 
unfeasible with a standard 32 GB GPU on a dataset with long sequences 
(Methods). Improving ProtGPT2 and ProGen2 generation quality would 
require extensive efforts to be made in fixing the insertion of random 
sequences that the model retained from pre-training on a large data-
base, since this is still happening in fine-tuned models. Instead, Protein-
VAE distilled knowledge from a pre-trained protein language model 

and leveraged it to facilitate efficient learning of the complex sequence 
patterns from limited data. Moreover, the ProteinVAE model was able 
to generate 1,000 sequences in less than 1 min, while the generation 
of 1,000 sequences of similar length took ~12.5 min and 13.5 h for the 
ProtGPT2 and the ProGen2 models. Overall, ProteinVAE generated a 
higher ratio of diverse sequences that are structurally similar to natural 
hexons (Fig. 3). Lastly, the ProteinVAE-generated sequences analysed 
above were selected with an emphasis on sequence quality, which lim-
ited the range of diversity to some extent. In the future, less stringent 
selection criteria could be used to obtain more diverse sequences.
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Fig. 4 | Molecular dynamics simulations. Top panels are the first half of the 
sequence length. Bottom panels are the second half of the sequence length.  
a, r.m.s.f. for all wild-type cluster representative sequences and stable ProteinVAE-
generated sequences. b, r.m.s.f. for all wild-type cluster representative sequences 
and stable ProGen2-generated sequences. c, r.m.s.f. for all wild-type cluster 
representative sequences and stable ProtGPT2-generated sequences. Data in  

a–c are presented as mean ± s.d. d, Heatmap of positions where mutations  
were introduced in stable ProteinVAE-generated sequences compared with  
their closest natural sequence, respectively. e, Heatmap of solvent accessible 
area across all positions in each stable ProteinVAE sample. f, Heatmap of  
solvent accessible area across all positions in each natural sequence. Nm, number 
of mutations.
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Concurrent works, ProT-VAE23 and ReLSO17, both involved autoen-
coders and the use of a language model, but (1) neither presented 
results on designing proteins at the same length range as hexons; 

(2) both models were trained for a different objective of exploring 
fitness landscape and generating functionally improved sequences; 
and (3) both used larger labelled datasets (ProT-VAE: 6,447 and 
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20,000 sequences; ReLSO: 1010, 204 and 51,175 sequences). ProT-VAE 
was trained to reconstruct the hidden state of a pre-trained protein 
language model. Since the ProT-VAE model has not been released, we 
simulated the reconstruction F1 in the ProT-VAE model by introducing a 
small Gaussian noise to the language model hidden state before decod-
ing and found that ProT-VAE generation performance quickly worsened 
even at a low noise level (Supplementary Note 8 and Supplementary 
Fig. 10). The ReLSO model was designed with an autoencoder instead 
of a VAE architecture, and fitness information is jointly trained to be 
encoded in the latent space. It was trained on both positive and nega-
tive samples with a specially designed interpolation loss. The language 
model in the encoder was not pre-trained in ReLSO. The decoder is 
a deep convolutional network. To train ReLSO on the hexon dataset 
without the fitness label, the regression-related term was removed from 
the loss formulation. ReLSO-generated sequences are repetitive, and 
they suffer from low sequence and structural similarity to the training 
data as shown in various metrics (Supplementary Figs. 1 and 3–9, Sup-
plementary Note 9 and Supplementary Table 3).

The capacity of ProteinVAE to learn the complex protein sequence 
distribution from limited samples could potentially be applied in a 
variety of different sequence design problems. To guide future model 
development, an ablation study was conducted to assess the impact 
of individual modules within ProteinVAE (Supplementary Note 10 and 
Supplementary Table 4). In the future, another model could be trained 
to map the ProteinVAE latent space to the protein fitness landscape 
and apply the ProteinVAE model to conditionally generate sequences 
with functional improvement18. Such computational exploration may 
facilitate exploration of distant regions of the fitness landscape where 
significant functional enhancement might be achieved.

Methods
Dataset
Hexon protein is the major capsid protein in adenovirus with a length 
spanning from 893 to 992 amino acids (average length: 938). To 
increase the chances of generating complete sequences covering all 
domains, only full-length hexon proteins annotated in the UniprotKB 
database26,37 were collected. These sequences were then filtered for 
those shorter than 800 amino acids for quality purposes, and, for 
ease of downstream application, sequences with non-standard amino 
acids (U, J, Z, O, B, X) were removed. In total, 711 hexon sequences 
were collected. The same training/validation/test set splits ratio 
of 7/2/1 was used for all models. The same random seed was used 
for splitting (done with scikit-learn 1.2.2 (ref. 60)) in each replicate 
group, respectively.

VAE
The VAE61 is composed of an encoder and a decoder. The encoder 
qϕ (z|x), a neural network parameterized by ϕ, maps the input data 
samples x into a latent variable z, assumed to follow a Gaussian distribu-
tion as its prior. The decoder pθ (x|z), another neural network param-
eterized by θ, reconstructs the sample x from the latent variable z. The 
VAE is trained by maximizing the evidence lower bound ELBO, where:

ELBO = Eqϕ(z|x) [logpθ(x|z)] − DKL (qϕ(z|x)||p(z))

Eqϕ(z|x)[logpθ(x|z)] is the expected conditional log-likelihood. p(z) 
is the prior Gaussian distribution; DKL(qϕ(z|x)||p(z))  is the Kullback– 
Leibler (KL)-divergence. The details are described in the original 
publication61.

In common text generation tasks, it has been demonstrated before 
that when KL-divergence decreases too much, the generated samples 
are likely to suffer from low diversity62. To prevent KL-vanishing and to 
allow effective manipulation of the impact of KL-divergence, a nonlin-
ear proportional-integral-derivative controller was implemented to 
automatically tune the weight of KL-divergence in the VAE objectives 

throughout training. The KL-divergence weight γ(t) is calculated 
through a feedback control defined as:

γ(t) = Kpe(t) + Ki∫
t

0
e(τ)dτ + Kd

de(t)
dt

e(t) is the error between actual and expected value at time t. Kp, Ki and 
Kd are the coefficients for the proportional, integral and derivative 
terms, respectively. See details in ref. 63.

Bottleneck encoder
To refine the global representation, the bottleneck attention module 
was used. This special attention module is defined as:

β (H;δ) = MultiHead (q,K,V )

where the keys K (size T × d) and values V (size T × d) are transformed 
from the output hidden representations of the pre-trained language 
model H (T × d). The parameter δ includes the weights for transforma-
tion of the query, keys and values. During training, the pre-trained 
language model stays frozen, and only the parameter δ is learned.

Restricted by the length of hexon, only limited pre-trained lan-
guage models are available. ProtBert (420 million parameters)30 was 
chosen as the pre-trained protein language model, as (1) it is trained 
with a length limit of 2,048 amino acids and (2) it achieved better results 
on downstream tasks than two other models trained on long protein 
sequences. In brief, the ProtBert used in ProteinVAE contains 30 layers, 
and it was trained for 300,000 steps on sequences shorter than 512 
amino acids, then for an additional 100,000 steps on sequences with 
a maximum length of 2,000 (ref. 30).

Non-autoregressive decoder
As mentioned in the introduction, the hypothesis was that the protein 
sequence can be better modelled with a non-autoregressive processing 
approach. Thus, inspired by the HybridVAE model33, deconvolution 
networks were used to perform upsampling. The deconvolutional 
network increases the spatial size of the input, while decreasing the 
number of hidden dimensions. Specifically, the deconvolutional net-
works consist of eight UpBlocks (Extended Data Fig. 1). In each UpBlock, 
a 1 × 1 convolutional layer transforms the input to have a lower number 
of channels, which reduces the number of parameters needed; in the 
next layer, a 3 × 3 deconvolutional layer upsamples the low-channel 
input. To maintain the gradient, the output of each previous UpBlock 
was concatenated as the input for the next block. Unlike HybridVAE, 
the deconvolutional networks output M was not passed to a recurrent 
neural network. Instead, a multi-head attention module was used to 
capture both short- and long-range relationships. Next, the output was 
converted to logits using a linear layer. Lastly, another amino-acid-wise 
attention module was added to capture the amino acid usage prefer-
ence among different viruses35. As a comparison, classic autoregres-
sive processing was tested by replacing the deconvolutional networks 
with a multi-layer long short-term memory (LSTM) recurrent neural 
network64. Both single direction and bidirectional LSTM models are 
tested. LSTM hidden sizes are divided by 2 when testing bidirectional 
LSTM. The hidden dimensions of the bottleneck representation z and 
the upsampled decoder hidden representation M were kept the same.

ProteinVAE training
The ProteinVAE model was implemented with Pytorch v.1.12.1 (ref. 65) 
and Pytorch-lightning v.1.6.5 (ref. 66). Training was monitored with 
wandb v.0.15.0 (ref. 67). The ProteinVAE model was trained on the 
hexon dataset using negative ELBO loss. KL-divergence was dynami-
cally weighted using a proportional-integral-derivative controller 
with expected KL-divergence of 0.5, Kp of 0.01, Ki of 0.0001 and Kd of 
0.001. Strand position was weighted to have 1.2× cross-entropy loss. 
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The ProteinVAE model was optimized using the Adam optimizer68 with 
a learning rate of 0.0005 and weight decay of 0.0001. Dropout rate of 
0.3 was used. A one-cycle learning rate scheduler69 was used with total 
steps 8,000, percentage of the cycle (in number of steps) spent increas-
ing the learning rate was set to 0.4 and the initial learning rate was set to 
1/20 of peak learning rate. Decoder and encoder latent sizes were set to 
128. In each of the eight decoder UpBlocks, upsampling was done after 
input was transformed to 16 channels. Encoder bottleneck attention 
has four heads. Decoder position-wise attention has two heads, and 
the decoder amino-acid-wise attention also has two heads. To prevent 
overfitting, the training was stopped with early stopping when valida-
tion cross-entropy loss had not improved in the last 250 epochs, and 
the checkpoint with the highest test F1 (calculated with torchmetrics 
v.0.8.1 (ref. 70)) was used for generation. The ProteinVAE model was 
trained on an NVIDIA V100 GPU with 32 GB of memory.

ProteinVAE sequence generation
Generate samples for MD analysis and synthetic human AdV analy-
sis. For each of the top 13 clusters (90% identity, size > 10), 50,000 
sequences were generated with the mean of the respective cluster and 
standard deviation of 3. Within each cluster, sequences more repetitive 
than the most repetitive natural sequence in that cluster were filtered 
out. For the rest of the sequences, each one is aligned against the whole 
natural hexon dataset to get the percentage identity towards the clos-
est natural protein. A bin width of 2% was used to separate sequences 
of different novelty. For the 17 bins with percentage identity from 60% 
to 92% (some bins are empty), the sequence with the highest APP was 
selected for Alphafold2 structure prediction. APP was calculated as:

APP = 1
L

L

∑
i=1

max
1≤ j≤21

pij

where pij is the predicted probability of amino acid j (including a special 
token ‘−’ representing a gap in sequence) at the ith position. L is the 
maximum length of training sequences. Predicted local-distance dif-
ference test (pLDDT) threshold was not benchmarked, because there 
are experimental structures for only five human adenovirus hexons, 
and four non-human adenovirus hexons. Instead, the threshold was 
set at 85% (higher than the general recommended value of 70%) to 
obtain more accurate structures. In total, 102 structures with an average 
pLDDT score of higher than 85% were selected for molecular dynamic 
analysis. Constructs are named as ci− j, where i represents the ith cluster 
and j signifies the jth bin.

All other samples are generated following this procedure. To 
achieve a balance between diversity and quality, a larger batch of vec-
tors were sampled with a higher standard deviation, and only high 
quality sequences were selected. Seven thousand vectors were sampled 
from a normal distribution with mean of 0 and standard deviation of 
4 and decoded to new sequences. To maintain high sequence quality, 
sequences were ranked according to APP, and we selected the top 1

7
 

sequences for downstream analysis.

MSA entropy
Clustal Omega v.1.2.4 (ref. 71) was used to calculate MSA for the entire 
natural hexon dataset mixed with an equal number of generated 
sequences. Columns with more than 80% gaps in either the natural 
or generated dataset were removed. Shannon entropy within each 
column was calculated as:

SE = −
20
∑
i=1
p(xi)log20p(xi)

where p(xi) is the frequency of amino acid i in each column. Pearson 
correlation was calculated between valid entropy values of natural 
and generated sequences.

Association measure for amino acid pairs
For any pair of amino acids a and b, the minimal proximity score and 
the pair association metrics were calculated as described in the original 
publication43. Distance between each occurrence of a at position xi 
with its nearest occurrence of b at position yi was computed, and then 
averaged across all occurrences of a:

Pm (a,b) = 1
n

n

∑
i=1

min
j=1,…,m

{|xi − yi|}

To remove dependency on the number of occurrences for different 
amino acids, the position of a was fixed and b was randomly shuffled 
(Rand(b) stands for a random array of positions for b). Mean 
(Pm(a,Rand(b))) and standard deviation (σPm(a,Rand(b))) of the randomly 
shuffled sequences (where position of b is shuffled, but position of a 
is fixed) were calculated, and the minimal proximity score was normal-
ized to obtain the association score as described in the original 
publication43.

Zm(a,b) =
Pm(a,b) − Pm (a,Rand(b))

σPm(a,Rand(b))

For the score shown in Fig. 2, averaged association scores were 
plotted for each group of sequences. A null value was assigned if a pair 
of amino acids did not exist in a sequence.

Sequence clustering and secondary structure analysis
Sequence clustering was done at different identity thresholds using 
MMSeqs2 (release 24 February 2021)72. For sequence homology detec-
tion, default MMseq2 settings were used to perform pairwise alignment 
between all possible pairs of generated and natural sequences in train-
ing data. To assess the structural similarity, SPOT-1D (original release)36 
was used to predict three-state (helix, strand, coil) secondary structure 
for all amino acids. For outlier detection in secondary structure ratio, 
given the sum of all three ratios is 1, a bi-variate Gaussian distribution 
was fitted only on the helix and strand percentage of natural hexons. 
Mahalanobis distance (d)73,74 was calculated between all generated 
samples and the centre of bi-variate Gaussian distribution. Since d2 
follows Chi-squared distribution, a critical value α = 0.05 was used to 
determine the cut-off distance. Samples with the smallest Mahalanobis 
distance and the smallest maximum seqID were identified to form the 
Pareto front75.

SASA analysis
Due to the high computational resource requirement, only a portion 
of sequences were selected to calculate the SASA profile. In total, 100 
natural sequences were randomly selected and folded to get the SASA 
of each amino acid in natural hexons. The 100 sequences were randomly 
selected from the 1,000 ProteinVAE-generated sequences used in previ-
ous sequence and structural pattern analysis as representatives. Struc-
tures were predicted with Alphafold v.2.0.0, and SASA was calculated 
with FreeSASA v.2.1.0 (ref. 76). Since the number of an amino acid might 
differ between the natural and generated samples, unpaired two-sided 
Welch t-test was used to compare the mean SASA for each amino acid77. 
A P value smaller than α = 0.05 is classified as statistically different. 
The t-test was implemented with Pingouin python library (v.0.5.2)78.

Latent space clustering and interpolation
To visualize the latent space, principal component analysis79 was used 
to reduce the number of dimensions to 2. The ten biggest clusters (457 
sequences in total) at 90% seqID in natural hexon sequences were used 
for plotting.

For interpolation, 1,000 points were linearly sampled between the 
hidden vectors of adenovirus 2 hexon and adenovirus 5 hexon. Hidden 
codes were passed through a decoder to get the predicted probabilities. 
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At each position, the token with the highest logit was chosen, and 
average positional probability was calculated as previously described.

As a control, direct interpolation between two sequences was 
done, by sampling a Bernoulli random variable with α probability to 
choose amino acid from adenovirus 2 hexon (1 − α probability from 
adenovirus 5 hexon) at each position. In total, 1,000 different α values 
were linearly selected from 0 to 1. Ten sequences were sampled at each 
α, resulting in 10,000 sequences in total. ProteinVAE was run on the 
directly interpolated samples, and the predicted probabilities were 
collected. The APP is calculated on probabilities for amino acids in the 
input sequence, instead of the amino acids with highest probability at 
each position.

ProtGPT2 fine-tuning and sampling
The ProtGPT2 model (original release) was fine-tuned on our training 
data. Due to GPU memory limitation, eight AMD MI50-32GB GPUs were 
used in parallel, with a total effective batch size of 16. Learning rate 
from 10−1 to 10−6 was tested with weight decay from 0 to 10−6 (Supple-
mentary Table 5). To prevent overfitting, the training was stopped with 
early stopping when validation loss had not improved in the last ten 
epochs, and the checkpoint with the lowest validation perplexity was 
selected for evaluation. The model with the lowest test perplexity was 
used for generation (learning rate: 10−3; weight decay: 0). The fine-tuned 
model was prompted with ‘M’ at the start of the sentence, and top_k 
sampling was used with the parameters as suggested in the original 
publication (top_k: 950; repetition penalty: 1.2)38. It was observed that 
generation performance drastically worsened with inclusion of any 
token with ‘X’, and all such tokens were removed. For the language 
models, even after fine-tuning, ProtGPT2 tends to generate shorter 
sequences without the minimal token criteria. To prevent generation 
of short sequences, the range of tokens allowed in a sequence was set 
to 300–350, as seen in tokenization of natural hexon sequences. Infer-
ence of 25 sequences was repeated for 66 batches (1,650 sequences in 
total; ~12.5 min inference time), until 1,500 sequences within the length 
range of hexon were accumulated. Sequences were ranked according 
to their perplexity80, and we kept only the top 1

7
 for comparison. To 

accommodate downstream analysis, ‘Z’ and ‘B’ found in Prot-
GPT2-generated sequences were replaced with appropriate standard 
amino acids.

ProGen2 fine-tuning and sampling
The ProGen2-small model was fine-tuned on our training data. Other 
larger ProGen2 models have drastically high GPU memory require-
ment; out of memory error would occur even with a batch size smaller 
than 2 on a 32 GB GPU. Eight AMD MI50-32GB GPUs were used in 
parallel for fine-tuning, with a total effective batch size of 48. Learn-
ing rate from 6 × 10−3 to 6 × 10−6 was tested with weight decay from 0 
to 10−6 (Supplementary Table 6). To prevent overfitting, the training 
was stopped with early stopping when validation loss had not 
improved in the last ten epochs, and the checkpoint with the lowest 
validation perplexity was selected for evaluation. The model with 
the lowest test perplexity was used for generation (learning rate: 
6 × 10−4; weight decay: 10−4). The fine-tuned model was prompted 
with ‘M’ at the start of the sentence; nucleus sampling was used. Since 
no generation parameter was suggested as optimal in the original 
publication20, top_p (0.7–1.0) and temperature (0.2–1.0) were opti-
mized according to the log-likelihood of generated sequences (Sup-
plementary Table 7). Top_p of 0.7 and a temperature of 0.4 were used 
for the final generation. To generate sequences within the length 
range, the maximum number of tokens allowed in a sequence was 
set to 992. Inference of 20 sequences was repeated for 90 batches 
(1,800 sequences in total; ~13.5 h inference time), until 1,500 
sequences within the length range of hexon were accumulated. 
Sequences were ranked according to their perplexity80, and we kept 
only the top 1

7
 for comparison.

ESM-IF1 generation
In total, 100 natural hexons were randomly selected from the training 
data, and their structures were predicted with Alphafold2 as described 
above. There are only 20 hexon structures in the PDB database (col-
lected on 30 August 2023), and many of the structures are for the same 
reference human AdV5 hexon. The nine non-redundant sequence–
structure pairs were not sufficient for fine-tuning of ESM-IF1. Genera-
tion was also attempted, but compared with using the predicted 
structures, sequence likelihood decreased. For both types of templates, 
sampling temperatures were optimized (Supplementary Tables 8  
and 9). Temperature of 0.1 was used in the final generation, as only 
insubstantial improvements in likelihood were observed with lower 
temperatures, while the diversity decreased drastically. For each com-
putationally obtained structure template, 15 sequences were generated 
with ESM-IF (original release). The 1,500 generated sequences were 
ranked according to log-likelihood. As long repetition (for example, 
EEEEEE) is a known failure mode39, sequences with single-amino-acid 
repetition longer than six amino acids were filtered out. Repetition of 
bi-gram or tri-gram (for example, KDKDKD) was also seen, and affected 
sequences were removed. The top 1

7
 sequences were used for 

comparison.

Molecular dynamics simulation setup
ProteinVAE samples were selected as described in previous sections. 
For comparison, sequences generated by ProtGPT2 and ProGen2 were 
randomly chosen if they exceeded 80% in both query and target cover-
age when aligned with the closest natural sequence and were within 
the natural distribution of helix-to-strand ratio. To increase diversity, 
samples were selected from all 1,500 generated sequences. From each 
model, one generated sequence was randomly selected in each 3% 
identity range from 70% to 100% (10 ranges; 8 ProGen2 sequences, 2 
ranges were empty; 10 ProtGPT2 sequences).

Input structures were used to build the protein representation 
using CHARMM-GUI v.3.8 online server81. Systems were solvated in an 
explicit TIP3P (ref. 82) water box. Charge neutrality was maintained by 
addition of counter ions, and physiological condition was mimicked 
using 0.15 M KCl.

All systems were energy minimized using the steepest descent 
before pre-equilibration phase, which was conducted for 500 ps under 
the constant number of particles, volume and temperature condition. 
Production phase was carried out for 100 ns. To ensure the stability, five 
randomly selected systems including four variants and one wild type 
were simulated for another 200 ns (total of 300 ns) and their r.m.s.d. and 
r.m.s.f. values were compared with their 100 ns simulated structures. 
All five systems showed negligible changes in r.m.s.d. and r.m.s.f. upon 
simulation time extension (Supplementary Fig. 2). The particle-mesh 
Ewald83,84 method was used with a cut-off radius of 1.2 nm for long-range 
electrostatic interactions. Heavy atom–hydrogen atom bonds were 
constrained using the parallel linear constraint solver (P-LINCS) algo-
rithm85. The Nosé–Hoover thermostat86 with a coupling time constant 
of 1 ps and the Parrinello–Rahman barostat87 with a coupling time con-
stant of 5 ps were used for the production phase. A reference coupling 
pressure of 1 bar and a compressibility of 4.5 × 10−5 bar−1 were used. For 
all simulations, periodic boundary conditions were applied in all direc-
tions. Simulations were carried out using CHARMM36m force field88 
by GROMACS/2021.3 (ref. 89). Structure visualization (Extended Data  
Fig. 4) was done using Protein Imager v.0.5.60 (ref. 90).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequences of all 711 natural hexons can be found at /data/hexon_711.
fasta in the CodeOcean capsule (https://doi.org/10.24433/CO.2530457.
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v2 (ref. 91)). All natural hexon sequences were downloaded from the 
UniprotKB26,37 database. Source data are provided with this paper.

Code availability
The code is provided at https://doi.org/10.24433/CO.2530457.v2  
(ref. 91). ProtBert is used for extracting embeddings, and its code can 
be accessed at https://huggingface.co/Rostlab/prot_bert.
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Extended Data Fig. 1 | Detailed Architecture of Encoder and Decoder CNN.  
(a) Encoder CNNs used a series of dilated 3 × 3 convolution layers along the 
sequence length dimension to reduce dimensionality of the pretrained language 
model amino-acid level embeddings. The flattened matrix is then transformed to 
the same length as the latent size of the pretrained language model embeddings 
to be used as the query in bottleneck attention. (b) Decoder CNNs used 8 
UpBlocks to upsample the VAE latent vector length (equals 1) to maximal 
sequence length. In each UpBlock, a 1 × 1 convolutional layer is used to transform 

input to a lower dimension, which reduces the number of parameters needed in 
the following layer with large kernels. The dilated 3 × 3 deconvolutional layer with 
stride of 2 is used to upsample the low-dimensional input. To prevent gradient 
vanishing, the input is also passed through a linear layer to get an identity matrix 
(T) of the same length as the deconvolutional output (U). The upsampled matrix 
U and the identity matrix is then concatenated as the input for the following 
UpBlock. The output of the final UpBlock is transformed to the decoder hidden 
dimension with another 1 × 1 convolutional layer.
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Extended Data Fig. 2 | Helix-to-strand Ratio in Sequences Generated by Base 
and Final version of ProteinVAE. (a) Natural hexon helix-strand ratio (n = 711). 
(b) helix-strand ratio from sequences generated using the final version of 

ProteinVAE model (n = 1000). (c) helix-strand ratio from sequences generated 
using the base version of ProteinVAE model (n = 1000). Secondary structure state 
was predicted from sequences directly using SPOT-1D.
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Extended Data Fig. 3 | Hypervariable regions in Natural and ProteinVAE-generated Sequences. Sequence logo of all 7 hypervariable regions for MSA of natural 
sequences and MSA of ProteinVAE generated sequences. As can be seen, both MSA have similar amino acid usage in majority of the columns.
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Extended Data Fig. 4 | Molecular Dynamics Representative Structures. Each 
column shows a hexon homotrimer from one hexon sequence. Side, top, and 
bottom views of all structures were shown in the first, second, and third row, 
respectively. Red, green, and blue colouring represent different subunits of the 

homotrimer. Column (a) is a wild-type structure. Columns (b–d) each display 
structure of a ProteinVAE generated sequence at 91.5%, 85.6%, 75.4% sequence 
identity with respect to their respective closest natural sequence.
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Extended Data Fig. 5 | RMSD for Simulated Sequences. RMSD for all natural 
representative sequences, ProteinVAE generated sequences, ProGen2 generated 
sequences (3 generated structures had structural clashes), and ProteinGPT2 
generated sequences (3 generated structures had structural clashes). Each  

box-plot shows the first and third quartiles, central line is median, and whiskers 
show range of data with outliers are omitted for readability. For each sample, the 
RMSD value for every picosecond from 5 ns to 100 ns were analyzed (n = 950).
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Extended Data Fig. 6 | RMSF Aligned According to MSA with Gaps Preserved. 
Top: Average RMSF for ProteinVAE generated sequences (blue) and natural 
representative sequences (pink) Middle: Average RMSF for ProtGen2 generated 
sequences (blue) and natural representative sequences (pink). Bottom: Average 
RMSF for ProtGPT2 generated sequences (blue) and natural representative 

sequences (pink). ProtGen2 and ProtGPT2 generated sequences inserted long 
fragments that are not homologous to any natural hexon. These fragments also 
have increased flexibility which could reduce structure stability. Data in (a-c) are 
presented as mean values +/− SD.
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Extended Data Fig. 7 | Human AdV Classifier. (a) Receiver operating 
characteristic (ROC) curve of latent human adenovirus hexon classifier. Area 
under the ROC curve is 0.97. (b) Predicted human AdV hexon likelihood for all 
sequences generated from each cluster. Sequences predicted to be human AdV 
hexon were shown as a red dot, and predicted non-human AdV hexon were shown 

as a blue dot. Percentages of human AdV in corresponding natural sequences 
were labeled as Nat_HAd% in each cluster. Clusters with more than 90% natural 
human AdV hexons were colored with a pink background. Predicted percentages 
of human AdV for generated sequences were labeled as Gen_HAd%. Decision 
threshold is shown as a dashed red line.
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