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Recent, rapid advances in deep generative models for protein design
have focused on small proteins with lots of data. Such models perform
poorly onlarge proteins with limited natural sequences, for instance,

the capsid protein of adenoviruses and adeno-associated virus, which

are common delivery vehicles for gene therapy. Generating synthetic

viral vector serotypes could overcome the potent pre-existing immune
responses that most gene therapy recipients exhibit—a consequence of
previous environmental exposure. We present a variational autoencoder
(ProteinVAE) that can generate synthetic viral vector serotypes without
epitopes for pre-existing neutralizing antibodies. A pre-trained protein
language model was incorporated into the encoder toimprove data
efficiency, and deconvolution-based upsampling was used for decoding

to avoid degenerate repetition seen in long protein sequence generation.
ProteinVAE is a compact generative model with just 12.4 million parameters
and was efficiently trained on the limited natural sequences. Viral protein
sequences generated were used to produce structures with thermodynamic
stability and viral assembly capability indistinguishable from natural

vector counterparts. ProteinVAE can be used to generate a broad range of
synthetic serotype sequences without epitopes for pre-existing neutralizing
antibodies in the human population, effectively addressing one of the
major challenges of gene therapy. It could be used more broadly to generate
different types of viral vector, and any large, therapeutically valuable
proteins, where available data are sparse.

Genetherapyisapowerfulapproachtotreating—even curing—genetic
disease, by theintroduction of new genetic materialinto a patient that
modifies their cell function. There are currently 13 United States Food
and Drug Administration-approved gene therapies’, perhaps most
notably a treatment for spinal muscular atrophy?, which cannot fail to
impress for its dramatic effect on a horrific disease that ravages infants
and devastates their families. These successes have generated much
optimism that gene therapy can be applied to the many thousands
of genetic diseases that afflict many tens of millions of people world-
wide®. However, the delivery of therapeutically meaningful amounts of
new genetic material to patient cells remains highly challenging. Chief
among these challenges is the immunogenicity of effective delivery

vectors* . Adenoviral (AdV) vectors are currently the most popular
vector used for vaccines and cancer therapy delivery, with 575 cur-
rently in clinical trial’. AdVs have many advantages, including broad
tropism profiles, lack of host genome integration, high transduction
efficiency (60-80%) of most dividing and quiescent cells and large
payload capacity (-38 kilobases)®'°. Despite this, substantial hurdles
remainin deploying themto correct genetic disease, as the prevalence
of pre-existing immunity against common human AdV serotypes is
very high worldwide. Thisimmunity is primarily driven by neutralizing
antibodies, which have prevalence rates for the most widely used HAd5
vector ranging from 35% of the populationinthe United States to more
than90% in Cote d’Ivoire". In a European study, 74% of children’s sera
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samples contained neutralizing antibodies for at least one serotype'.
Another major related issue is that repeated vector administration is
precluded even among patients without environmental exposure, as
different serotypes are needed for each round”. Anti-AdV antibodies
prevent AdV vectors from transducing their targets, leading to ineffec-
tive treatment'. Strategies to address thisinclude using rare serotypes,
non-human AdV vectors and AdV capsid engineering. These have met
with limited success and do not adequately address the challenge of
immunogenicity arising from repeated administration. As the major
capsid protein, hexons were identified as the primary target of neu-
tralizing antibodies”. Hexon modifications can assist evasion of the
serotype-specific neutralizing antibodies*. However, changing the
entire solvent-exposed surface, such that all potential neutralizing
antibody epitopes are removed, involves introducing a large number
of mutations. Introducing these many mutations randomly or using
rational structure-based design cannot be done without catastrophic
loss of protein function™,

We hypothesized that machinelearning could be used to generate
dramatically different hexon proteins without impacting protein fold-
ing, particle assembly or cell transducing function. Here, we presenta
generative model capable of designing synthetic AdV vector serotypes
that have never been surveilled by an animal or human immune sys-
tem and therefore are predicted to avoid pre-existing AdV immunity.
Deep learning models have been recently developed for de novo pro-
tein design”**. However, these models were trained on much larger
datasets. For example, ProteinGAN, the first Generative Adversarial
Networks (GAN) model designed for protein sequence generation,
comprised 60 milliontrainable parameters and was trained on 16,706
unique malate dehydrogenase sequences®. As only 88 serotypes of
human adenovirus are currently known?, the number of available
unique hexon sequencesis limited to 711unique full-length sequences
(UniprotKB database®). Due to limited available training data, models
with a large number of parameters can be prone to overfitting, and a
smaller model can be more appropriate?”. Hexon sequences average
938 aminoacidsinlength, suggesting a high likelihood of inter-residue
dependency at longer distances. No previous work has reported gen-
erating sequences of comparable length. This, combined with the
small dataset, required development of a small but expressive model
that could be trained efficiently. To solve this, a pre-trained protein
language model for amino-acid-level embedding was used, allowing
transfer of knowledge learned by the pre-trained model on alarge pro-
tein database. A variational autoencoder (VAE) framework was used to
obtainaninformative andstructured latent space, and thereby convert
the discrete protein sequence space to a continuous space for ease of
sampling and manipulation. A special bottleneck attention module®
was used in the encoder to map the high-quality amino-acid-level
embedding—generated by the pre-trained model—to the latent space.
Anon-autoregressive deconvolution-based decoder was designed for
sequence reconstructionfromthe latent variable. This model, whichwe
are calling ProteinVAE, was able to generate high-quality, structurally
stable hexon sequences with only 12.4 million parameters. Neutralizing
antibody accessible hexon surfaces differed from natural hexonsto the
extent that they could be classified as new serotypes that are predicted
to avoid pre-existing immunity.

Results

Generative VAE model for large proteins with limited data

To address the limited amount of hexon data available, amodel that
canbeeffectively trained on small datasetsis required. A pre-trained
protein language model” was incorporated in the encoder, as illus-
trated in Fig. 1. A convolutional neural network was used to extract
afeature vector from the hidden amino-acid-level representation
produced by the pre-trained protein language model (Extended Data
Fig.1a). Using the convolutional neural network-extracted feature
vector as the queryinthe bottleneck attention module, global-level

information was integrated to obtain a refined protein-level repre-
sentation. Instead of training from scratch on the limited hexon
data, the parameters in the pre-trained model were kept fixed. This
permitted use of the high-quality amino-acid-level embeddings and
more efficient training on a small dataset. ProtBert was chosen as
the pre-trained protein language model, as it achieved the highest
accuracyin prediction tasks among three models trained on sequence
length ranges (2,048 amino acids) that cover hexonsin the ProtTrans
article®’. ProtTrans®® was one of the first efforts to apply language
models on protein sequence data. ProtTrans* was highly cited, as its
models were commonly used as benchmarks for both generationand
predictions tasks. ProteinVAE can be easily adapted for alternative
language models to extract embeddings.

For the decoder, a non-autoregressive processing method was
used to avoid degenerate repetition commonly seen in generation of
long sequences®*. Inspired by HybridVAE**, deconvolutional layers
(Extended DataFig.1b) were designed to upsample the bottleneck rep-
resentation, protein-level representation, toamino-acid-level represen-
tationMof'size L x dy,, where L means sequence length, and d,. means
decoder hidden dimension. Specifically, aconvolutionlayer with kernel
size of 1 x 1separated deconvolutional layers with abigger 3 x 3kernel*.
Thisresultedinareduction of the number of parameters needed. Next,
aposition-wise multi-head attention mechanism was used to capture
the dependencies between amino acid usage at different positions,
which allowed effective modelling of the long-distance interactions.
Alinear layer was used to convert the hidden representation M to the
logits matrix P. Another multi-head attention module is designed to
adjust for amino acid preference in different viruses®, and, therefore,
itis done across different amino acid channels. Some initial results of
the model generated more helix sequences than strand (Extended Data
Fig.2). Combined with the consensus that strand proteins are harder to
design, areweighted cross-entropy loss that assigned higher penalty
tothestrand positions, predicted by SPOT-1D (ref.36), wasused in the
final model.

ProteinVAE was trained on all hexon proteinsin the UniprotKB***’
database that are annotated to be full-length. Since the desired output
is full-length hexons that include all domains, sequences with incom-
plete domains were removed. Sequences with non-standard amino
acids were also removed. The resultant dataset included 711 hexon
sequences with length ranging from 893 to 992 amino acids.

Experimental setup for comparison with previous methods

To evaluate sequence generation, 7,000 samples were generated by
sampling a Gaussian distribution with mean of 0 and standard devia-
tionof 4 fromthe latent space and decoded by the ProteinVAE decoder.
The top 1,000 sequences with highest average positional probability
(APP) were selected. APP is calculated by averaging the token prob-
ability across all positions in a sequence, which reflects the model
confidence level for the generated sequence. To benchmark hexon
sequence generating capability against the current state-of-the-art,
two recently published large transformer-based language models,
ProtGPT2 (ref. 38) (738 million parameters) and ProGen2 (151 million
parameters)?’, were selected and fine-tuned on the hexon dataset.
ProtGPT2 was trained with a byte-pair encoding tokenizer, and Pro-
Gen2was trained with single-amino-acid tokens. ESM-InverseFolding
(ESM-IF1)*, a competitive model, was used as a representative model
for the fixed-backbone approach. ESM-IF1 was not fine-tuned due to
the lack of structural data for most sequences in the training dataset.
Other fixed-backbone methods required prohibitively large computa-
tional resources, for example, see refs. 40,41. Detailed fine-tuning and
generation processes are described in the Methods. Sequence genera-
tionwas done only onceineach model. Another previously published
multi-layer-perceptron-based VAE (MLP-VAE) model** was considered
for abenchmark. The MLP-VAE model (12.7 million parameters) was
trained on one-hot-encoded multiple sequence alignment (MSA) of
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Fig.1|ProteinVAE architecture. Encoder: pre-trained language model (for
example, ProtBert) converts the input one-hot-encoded sequences to amino-acid-
level representation H. Encoder CNN extracts crude sequence-level representation
q, whichis used as the fixed query vector in the bottleneck attention mechanism
to produce the refined global representation z. Dimensionality of zis adjusted
withalinear layer. Reparameterization samples z' from the distribution defined by
z.Decoder: deconvolutional networks are used for upsampling the latent vector

z'. Self-attention along the length dimension is used to capture long-distance
dependency. A linear layer converts hidden representation Mto logits P, and
another self-attention along the channel dimensionis used to adjust foramino
acid usage difference. The final logits are passed through a softmax layer to
obtain probabilities, with the highest probability amino acid being selected as the
predictionat each position. d.,, latent dimension; d,,.., hidden dimension of pre-
trained language model; CNN, convolutional neural network; L, sequence length.

the hexon dataset, generated only 40 unique sequences with 1,000
randomly sampled latent vectors and was therefore not included in
the comparison (Supplementary Note 1 and Supplementary Table 1).
Benchmarking using the model developed by Ogden et al."” was con-
sidered, but was not possible due to the lack of publicly available
hexon fitness landscape data. Generation with fine-tuned ProtBert*
was also attempted; results can be found in Supplementary Note 2,
Supplementary Table 2 and Supplementary Figs.1and 3-9.

ProteinVAE learns functional hexon-defining characteristics

To assess ProteinVAE’s capacity to learn the distribution of natural
hexonsequences, several metrics were computed comparing both local
and whole-sequence-level patterns. Local amino acid pair association
score* was calculated for all possible combinations in natural and
model-generated sequences. (Fig. 2a). Similarity of ProteinVAE and
ProtGPT2 scores to natural indicated that these models have learned
thelocal amino acid patterns of natural hexons. In contrast, almost all
amino acid pairs occur at a further distance than randomly shuffled
sequences for ESM-IF1-generated sequences—substantially differ-
ent from natural sequences. Lower level of association was seen in
ProGen2-generated sequences, as indicated by the overall low abso-
lute value, which also differs from the natural pattern. In addition,
ProteinVAE-generated sequences also maintained a similar sequence
profilein all seven hypervariable loops (Extended Data Fig. 3). Global
sequence features of individual generated sequences were evaluated.
Fine-tuned ProtGPT2 and ProGen2 perplexity levels were used to quan-
tify the resemblance of generated to natural hexon sequence features
(Fig.2b), asalarge language model (LLM) evaluator has demonstrated

its potential in approximating human judgement in natural language
processing tasks**. The number on the x axis is the average perplexity
for each group. Lower perplexity means better fit in the training data
of natural hexons. Natural sequences achieved lowest perplexity in
both LLMs, while sequences with only 5% random mutations received
considerably higher perplexity. This demonstrated that both models
had learned the natural sequence profile and were sensitive enough
to detect global sequence pattern changes. Sequences generated
by fine-tuned ProtGPT2 and ProGen2 received low perplexity when
evaluated by eachrespective LLM due to the known self-enhancement
bias***¢. Excluding each model’s self-evaluation, ProteinVAE-generated
sequences received lower perplexity than the sequences with 5% ran-
dom mutations. Another traditional metric, the HMMER score*’, was
computed to assess the domain-level likelihood of each individual
sequence containing the hexon domain (Fig. 2c). The percentage of
hitsand the average score are labelled next to the model name. Scores
were normalized by the highest score seenin natural sequences. Higher
score means higher likelihood of a sequence containing a domain. All
natural sequences were identified as high-scoring hits in both hexon
domains, whereas in sequences containing 5% random mutations,
almost no hits were found. ProteinVAE- and ProtGPT2-generated
sequences had the highest average likelihood to contain the hexon
N-terminal domain, while ProtGPT2-generated sequences scored the
highest for the C-terminal domain. ESM-IF1-generated sequences are
likely to contain only the hexon N-terminal domain, as no hits were
identified in the HMMER search for the hexon C-terminal domain. Next,
the generated sequences were assessed for preservation of the natural
evolutionary profile. Shannon entropies were computed for all valid
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Fig. 2| Comparing sequential and structural characteristics with natural
hexons. a, Amino acid pair association scores for all ProtGPT2-generated,
ProteinVAE-generated and natural sequences. Negative values (blue) indicate
shorter distances compared with random shuffled sequences. b, Sequence
perplexity (log,, transformed) from fine-tuned ProtGPT2 (left) and ProGen2
(right). c, HMMER score for the hexon N-terminal (left) and C-terminal (right)
domains. In panels b and ¢, all natural sequences were used for analysis (n = 711).
For allmodels, the same ratios of higher quality sequences were compared
(ProteinVAE: n=1,000; all other models: n = 214). Each box-plot shows the first
and third quartiles, central line is median and whiskers show range of data with
outliers displayed individually. d, Shannon entropy for natural hexons and
sequences generated by allmodels in MSA columns with above 20% occupancy in

each dataset. A higher value reflects higher sequence variability across samples.
e, Positions of invalid columns in MSA (less than 80% occupancy) in the reference
sequence of human adenovirus serotype 5 hexon (P04133). Colour indicates
number of invalid columns (log transformed). Red squares show the location

of HVRs. f, Helix and strand ratio in natural and generated hexons. Pink shade
inall plots shows the areain the bi-variate normal distribution fitted on natural
samples (a = 0.05). Ingenerated sequence plots, grey points represent outliers,
while coloured points are sequences considered within the natural distribution.
g, SASA for allamino acids in ProteinVAE-generated and natural proteins.
Asterisk indicates amino acids with significantly different (unpaired two-sided
Welch t-test, a = 0.05; Pvalue: Glu, 0.037; Asn, 1.13 x 10”7) SASA values between
two groups.

positions in the MSA of natural and generated sequences (Fig. 2d).
The position of invalid columns was visualized with the location of
hypervariable regions (HVRs) in Fig. 2e. Shannon entropy of Protein-
VAE (Pearson’s r = 0.88)-generated sequences presented peaks and
valleys at similar locations to the natural sequences. Invalid columns
in ProteinVAE MSA appeared mostly in the HVRs, which s similar to the
natural MSA. Together, they suggested that ProteinVAE has learned the

underlying sequence distribution. Both ProtGPT2 and ProGen2 havea
high number ofinvalid columns, suggesting their generated sequences
had more insertion or deletion mutations distributed throughout
the sequence (Fig. 2e). Different sequence variability patterns were
also present in ProtGPT2 (Pearson’s r = 0.7)-generated and ProGen2
(Pearson’sr=0.37)-generated sequences. Notably, ESM-IF1-generated
sequences exhibited different characteristics in the N-terminal and
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C-terminal domains, with poor resemblance to natural profile in the
latter (probably because training length is only 500 amino acids™).
Hexonsequence length added difficulties toitsmodelling. Generating
long (-1,000s of tokens) and coherent texts in a specific small domain
ischallenging even for fine-tuned LLMs such as GPT2 (refs. 31,32), and
generated texts typically suffer from degenerate repetition. To evaluate
whether the generated sequences can avoid the degenerate repetition
artifacts, while capturing certain local repetitive patterns observedin
natural sequences*®, the number of repeated amino acids was calculated
in a fixed-length window sliding across all possible positions in each
sequence (Supplementary Fig.1and Supplementary Note 3). Regardless
ofthe window size used, ProteinVAE (Pearson’s r= 0.92) samples closely
follow the repetitiveness trend of the natural, while ESM-IF1 showed
adifferent repetition pattern (Pearson’s r = 0.13). Notably, repetition
didnotincrease as the generation progressedin fine-tuned ProtGPT2
(Pearson’sr=0.54) and ProGen2 (Pearson’s r = 0.56) samples, but they
did not maintain the local repetition patterns.

ProteinVAE learns hexon structural characteristics

To evaluate structural characteristics, first Q3 secondary structure
was predicted for all natural and generated sequences with SPOT-1D
(ref.36).Figure 2f shows that strand and helix ratiois correlated (Pear-
son’sr=-0.86) in natural hexons. A similar trend existed in sequences
generated by all models, while a weaker correlation was observed in
ESM-IF1 (Pearson’s r = —0.65) (Fig. 2f). To further analyse secondary
structure profile, abi-variate normal distribution was fitted on the natu-
ral set, and out-of-distribution samples were identified in the gener-
ated sequences (a = 0.05). ProteinVAE (95.85%) and ProtGPT2 (93.93%)
samples share similar secondary structure composition with natural
hexons (in-distribution samples) (Fig. 2f). Solvent accessible surface
area (SASA) profiles were computed for all 20 amino acids in 100 ran-
domly selected sequences from ProteinVAE samples and natural hexons
(Fig. 2g). SASA was calculated from Alphafold2 (ref. 49)-predicted
structures (Supplementary Note 4). SASA profiles for 18 amino acids
arestatistically indistinguishable in natural and ProteinVAE-generated
sequences (Methods). Two amino acids (Glu, Asn) have significantly
different SASA values, but their surface exposure character is retained.
This comparison further supports that ProteinVAE-generated
sequences are structurally similar to natural hexons; it also indicates
that the ProteinVAE model has learned the physical-chemical proper-
ties of each amino acid to some extent. Only ProteinVAE-generated
sequences were analysed due to limited computing resources.

ProteinVAE generates diverse hexon sequences

Tovisualize sequence diversity, an equal number of natural and gener-
ated sequences by all models were clustered at different thresholds.
ProtGPT2- and ProGen2-generated samples produced many clusters
evenatextremely lowidentity threshold. Combining this trend with the
highratio ofinvalid columnsin their MSA (Fig. 2e), itis likely that Prot-
GPT2andProGen2inserted sequence fragments from the vast Uniref50
database that they were pre-trained on’®. ProteinVAE-generated
sequences closely resemble sequence patterns found in natural hexon
populations. Notwithstanding, they consistently had more clusters
and higher diversity than natural sequences at all thresholds (Fig. 3a).
The ESM-IF1 model reached a higher level of diversity. This is due to
the lower quality in the C-terminal half of the sequence, as this section
of ESM-IF1-generated sequences were not likely to contain the hexon
C-terminal domain and had higher entropy (Fig. 2c,d). Since the goal is
to generate functional hexons that are biologically relevant, the ability
of the model to diversify the sequences, while keeping high structure
resemblance towards natural hexon protein, is critical. Sequence diver-
sity was assessed for sequences with similar secondary structure ratios
tonatural sequences (in-distribution samplesin Fig. 2f). Sequences with
less than 80% target and query coverage when aligned to their closest
natural sequence wereremoved. All in-distribution ProteinVAE samples
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Fig.3| Comparing sequence diversity against sequence quality across
models. a, Number of clusters at different identity thresholds. b, Scatter plot
for sequence diversity and secondary structure similarity. The x axis is the
maximum seqID on all aligned pairs. The y axis is the maximum percentage
identity of three-state secondary structure on all aligned pairs of generated
and natural sequences. Sequences closer to the top-left corner areideal, as they
are structurally similar to natural protein but more novel in sequence. ¢, Pareto
frontiers: the optimal sequences designed by each model are highlighted along
therespective frontier.

satisfy this sequence-level constraint, as they have been trained only
on hexon sequences. In contrast, only 37.85% and 12.15% of samples
are left inthe ProtGPT2 and ProGen2 groups, respectively, which fur-
ther supports the argument that ProtGPT2 and ProGen2 incorporate
non-hexon fragments. While the absolute sequence identities (seqIDs)
of ProteinVAE samples only cover the higher end of the range seen in
other samples, all analysed ProteinVAE in-distribution samples have
high structural similarity towards natural (Fig. 3b). Only the top1,000
sequences with highest average positional probability were selected
from 7,000 sequences generated by ProteinVAE, which ensures high
sequence quality at the cost of lower diversity. There was no sequence
in ESM-IF1-generated samples that satisfied the screening conditions,
which is probably due to the low C-terminal sequence quality. To
directly evaluate sequence diversity against structural similarity, we
plotted the Pareto frontier of all generated samples, respectively, in
Fig.3c.Inthe comparablerange, ProteinVAE produced samples more
diverse without disruption of structural profile.
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Molecular dynamics simulations confirm stable structure and

interfaces

Molecular dynamics was used to assess structural stability. Natural
hexon conformational sampling was obtained by clustering on natural
sequences at 90% seqID and collecting the representative sequence
fromeach cluster with more than ten sequences (13 clusters produced
13 representative sequences). A detailed generation process can be
found in the Methods.

Three-dimensional structures for natural and model-generated
sequences were predicted with Alphafold2. Hexons form homotrim-
ersinthe adenovirus capsid with extensive inter-subunitinteractions
(Extended Data Fig. 4). Thirteen representative natural hexon mono-
mers consist of ~18% helix and 28% B-strand, with turns and coils mak-
ing up the remaining 54% of the structure®. A comparison between
the representative structure of natural hexon (A4ZKL6) and three
ProteinVAE-designed hexons (with 91.5%, 85.6% and 75.4% identity to
the closest natural hexon) indicated that they maintained the mor-
phology and symmetry of the natural counterpart (Extended Data
Fig. 4). All predicted structures were subject to 100 ns molecular
dynamics, where root-mean-squared deviation (r.m.s.d.) has stabi-
lized (Extended Data Fig. 5and Supplementary Fig. 2). R.m.s.d. reveals
that ProteinVAE-generated structures had a range similar to natural
hexons (natural hexon: 1.14-4.53 A; ProteinVAE samples: 1.21-6.58 A),
while the samples generated by ProtGPT2 (1.46-14.67 A) and ProGen2
(1.56-8.67 A) showed larger r.m.s.d. values (Extended Data Fig. 5).
Root-mean-squared fluctuation (r.m.s.f.) to analyse local structural
flexibility (Fig. 4) showed that ProGen2 introduced mutations that sig-
nificantly increased flexibility in regions that were comparatively rigid
in natural sequences, while those introduced by ProteinVAE did not.
ProtGPT2 and ProGen2 also inserted long, highly flexible, potentially
destabilizing fragments that are not homologous to natural hexons
(Extended Data Fig. 6). As observed in natural MSA, the structurally
exposed regions have higher evolutionary rate, and they are likely to
be tolerant of mutations®2., The same trend has been observed with
artificially introduced mutations®. Mutations in ProteinVAE samples
(Fig. 4d) are more likely to occur in these naturally exposed regions
(Fig.4e,f). ProteinVAE was able to generate diverse molecular dynamics
stable sequences, with the most novel sequence containing 291amino
acids different from its closest natural sequence with 39.62% viral
surface area changed. This degree of novelty illustrated ProteinVAE’s
generative capacity, while the considerably changed viral surface could
increase chances of evading pre-existing serotype-specific antibodies.

ProteinVAE produces novel synthetic human AdV serotypes

To distinguish human adenovirus serotypes from generated
sequences, a simple logistic regression classifier was trained from
the encoder embeddings of all training data (364 human adeno-
virus hexon sequences and 347 non-human adenovirus hexon
sequences). The validation area under the receiver operating char-
acteristic curve of the trained classifier is 0.97 (Extended Data
Fig. 7a and Supplementary Note 5), and the validation F1 score is
0.94. Sequences generated from each cluster were encoded and
classified (Extended Data Fig. 7b). The percentage of generated
sequences classified as human adenovirus hexon correlated with
that of natural sequences in each cluster (Pearson’s r = 0.81). Phy-
logenetic relationships were analysed between the 46 predicted
human adenovirus hexon sequences, 65 hexons from unique human
adenovirus serotypes in the training set and 20 randomly selected
hexons with non-human host (Fig. 5a and Supplementary Note 6).
A majority of the generated hexon sequences reside within the phylo-
genetic clades of human adenovirus species Band D, while preserving
asubstantial evolutionary divergence in relation to known serotypes.
In addition, six generated sequences are separated from clades of
known human species, but they still reside in the primate adenovirus
clade (highlighted with ared curve in Fig. 5a). This suggested that they

might represent novel human adenovirus species, or they might also
be primate adenovirus hexons similar to human adenovirus.

Generated sequences were then aligned with every natural human
adenovirus hexon. Amino acid divergence in loop 1 and loop 2 was
calculated for each pair of sequences (Fig. 5b,c). These loops are con-
sidered to be the primary serotype determining hexon regions™. Gener-
ated sequences diverged more than4.2%inloopland morethan1.2%in
loop 2 from any known serotypes, which defines them as hexons from
new human adenovirus serotypes (Supplementary Note 7).

ProteinVAE latent space allows interpolation

One benefit of using the VAE-based model is the ease of sampling pro-
vided by the structured VAE latent space (‘Discussion’). To validate
that evolutionary relationships and sequence similarities have been
captured in the latent vectors, the ten largest clusters (at 90% seqID)
were plotted in dimension-reduced hidden space (principal compo-
nent analysis obtained) (Fig. 6a). Multiple clusters can be found in
the hidden space distinctly separated. ProteinVAE hidden space also
appears around the mean of O with no obvious hole. Next, interpola-
tion was done between hexons from two interchangeable adenovirus
serotypes, AdV2 and AdV5 (ref. 54). In total, 1,000 vectors were lin-
early interpolated between AdV5 and AdV2 hexon hidden vectorsin
ProteinVAE latent space, since this is a common approach to utilize
VAE structure latent space®°, These were decoded to sequences. As
a control, another method> was implemented to sample between
AdV5and AdV2 hexon sequences directly. Both the control and latent
interpolation achieved monotonic changes in Hamming distance
(Fig. 6¢,d). However, ProteinVAE latent interpolation allowed for gen-
erationof natural-resembling sequences, asindicated by higher average
positional probability (Fig. 6b).

Discussion

ProteinVAE can learn the intrinsic relationships of long protein
sequences fromalimited number of samples and generated sequences
which could be used to generate molecular dynamics stable struc-
tures. In addition, generated sequences are more diverse than natu-
ral sequences, capable of forming more clusters at the same identity
threshold. Some ProteinVAE-generated hexons can be classified as
new human adenovirus serotypes with imputed serotyping, providing
meaningful candidate sequences for therapeutic applications.

Considerable efforts have been made toward computationally
expanding known protein families with novel sequences. In conven-
tional bioinformatics, hidden Markov models®*” were used with limited
success dueto theirinability tolearn the higher-order relationshipsin
natural protein families.

More recently, deep learning models, including GANs
VAEs'"**%*? and large generative protein language models®>***, have
been implemented to learn the complex constraints in biological
sequence design. These methods have mostly focused onshorter pro-
tein sequences with many members from the same family. Because of
this, they tend to perform poorly onlarge proteins with few members,
such as AdV hexons. Challenges associated with generating diverse
hexon sequences were demonstrated with the unsatisfactory perfor-
mance of a fixed-backbone design model (ESM-IF1) and two recently
published LLMs (ProtGPT2 and ProGen2) fine-tuned on the hexon
dataset. Although the competitive fixed-backbone design method
(ESM-IF1) showed more promising results on smaller proteins, with
the current training sequence length range (500 amino acids) ESM-IF1
cannot generate high-quality hexon sequences at the C terminus. In
addition, these models require significantly higher GPU memory for
training and generating long sequences, as the inter-residue distance
information requires a quadruple amount of memory for processing
asthelengthincreases. Forinstance, 24 GB of GPU memory is needed
to generate one hexon sequence using ESM-IF1, while only 21 GB of
GPUmemoryisneededtogenerate1,000 hexon sequencesin parallel

21,58
’
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Fig.4 | Molecular dynamics simulations. Top panels are the first half of the
sequence length. Bottom panels are the second half of the sequence length.

a, r.m.s.f.forall wild-type cluster representative sequences and stable ProteinVAE-
generated sequences. b, r.m.s.f. for all wild-type cluster representative sequences
and stable ProGen2-generated sequences. ¢, r.m.s.f. for all wild-type cluster
representative sequences and stable ProtGPT2-generated sequences. Data in

a-care presented as mean + s.d. d, Heatmap of positions where mutations
wereintroduced in stable ProteinVAE-generated sequences compared with
their closest natural sequence, respectively. e, Heatmap of solvent accessible
areaacross all positions in each stable ProteinVAE sample. f, Heatmap of
solventaccessible area across all positions in each natural sequence. N, number
of mutations.

using ProteinVAE. For the LLMs, the fine-tuned ProtGPT2 performed
better than the fine-tuned ProGen2 model. This is probably due to the
higher number of parametersin the ProtGPT2 model. Larger ProGen2
models might generate better sequences, but even fine-tuning themis
unfeasible with astandard 32 GB GPU on a dataset with long sequences
(Methods).Improving ProtGPT2 and ProGen2 generation quality would
require extensive efforts tobe made in fixing the insertion of random
sequences that the model retained from pre-training on a large data-
base, since this is stillhappening in fine-tuned models. Instead, Protein-
VAE distilled knowledge from a pre-trained protein language model

and leveraged it to facilitate efficient learning of the complex sequence
patterns from limited data. Moreover, the ProteinVAE model was able
to generate 1,000 sequences in less than 1 min, while the generation
0f 1,000 sequences of similar length took ~12.5 min and 13.5 h for the
ProtGPT2 and the ProGen2 models. Overall, ProteinVAE generated a
higher ratio of diverse sequences that are structurally similar to natural
hexons (Fig. 3). Lastly, the ProteinVAE-generated sequences analysed
above were selected with an emphasis on sequence quality, whichlim-
ited the range of diversity to some extent. In the future, less stringent
selection criteria could be used to obtain more diverse sequences.
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adenovirus hexon. a, Phylogenetic treeillustrating relationships among hexon
protein sequences. The tree was constructed using the maximum likelihood
method with BLOSUM62 substitutions model (see the Methods for details).
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Fig. 6 | ProteinVAE latent space allows interpolation. a, Latent space clustering of sequences from the ten largest clusters at 90% identity. b, Average positional
probability for latent space interpolated sequences and direct interpolated sequences. ¢, Hamming distance to AdV2 hexon. d, Hamming distance to AdV5 hexon.

PC1, the first principal component; PC2, the second principal component.

Concurrentworks, ProT-VAE? and ReLSOY, both involved autoen-
coders and the use of a language model, but (1) neither presented
results on designing proteins at the same length range as hexons;

(2) both models were trained for a different objective of exploring
fitness landscape and generating functionally improved sequences;
and (3) both used larger labelled datasets (ProT-VAE: 6,447 and
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20,000 sequences; ReLSO: 10", 20* and 51,175 sequences). ProT-VAE
was trained to reconstruct the hidden state of a pre-trained protein
language model. Since the ProT-VAE model has not been released, we
simulated thereconstruction Flinthe ProT-VAE model by introducing a
small Gaussian noise to the language model hidden state before decod-
ingand found that ProT-VAE generation performance quickly worsened
even at a low noise level (Supplementary Note 8 and Supplementary
Fig.10). The ReLSO model was designed with an autoencoder instead
of a VAE architecture, and fitness information is jointly trained to be
encoded inthe latent space. It was trained on both positive and nega-
tive samples with aspecially designed interpolation loss. The language
model in the encoder was not pre-trained in ReLSO. The decoder is
a deep convolutional network. To train ReLSO on the hexon dataset
without thefitnesslabel, the regression-related term was removed from
the loss formulation. ReLSO-generated sequences are repetitive, and
they suffer fromlow sequence and structural similarity to the training
dataasshowninvarious metrics (Supplementary Figs.1and 3-9, Sup-
plementary Note 9 and Supplementary Table 3).

The capacity of ProteinVAE to learn the complex protein sequence
distribution from limited samples could potentially be appliedin a
variety of different sequence design problems. To guide future model
development, an ablation study was conducted to assess the impact
ofindividual modules within ProteinVAE (Supplementary Note 10 and
Supplementary Table 4). Inthe future, another model could be trained
to map the ProteinVAE latent space to the protein fitness landscape
and apply the ProteinVAE model to conditionally generate sequences
with functionalimprovement'®, Such computational exploration may
facilitate exploration of distant regions of the fitness landscape where
significant functional enhancement might be achieved.

Methods

Dataset

Hexon proteinis the major capsid proteinin adenovirus withalength
spanning from 893 to 992 amino acids (average length: 938). To
increase the chances of generating complete sequences covering all
domains, only full-length hexon proteins annotated in the UniprotkB
database®** were collected. These sequences were then filtered for
those shorter than 800 amino acids for quality purposes, and, for
ease of downstream application, sequences with non-standard amino
acids (U, ], Z, O, B, X) were removed. In total, 711 hexon sequences
were collected. The same training/validation/test set splits ratio
of 7/2/1 was used for all models. The same random seed was used
for splitting (done with scikit-learn 1.2.2 (ref. 60)) in each replicate
group, respectively.

VAE

The VAE® is composed of an encoder and a decoder. The encoder
gy (z1x), a neural network parameterized by ¢, maps the input data
samplesxintoalatent variable z, assumed to follow a Gaussian distribu-
tion as its prior. The decoder pg (x|2), another neural network param-
eterized by 6, reconstructs the sample xfromthe latent variable z. The
VAE is trained by maximizing the evidence lower bound ELBO, where:

ELBO = £, 1) [108 Po(X|2)] — Dk (G4(10)1Ip(2))

Eq,zollog po(x|2)] is the expected conditional log-likelihood. p(2)
is the prior Gaussian distribution; Dy, (g,(z/x)||p(2)) is the Kullback-
Leibler (KL)-divergence. The details are described in the original
publication®.

Incommontext generation tasks, it has been demonstrated before
that whenKL-divergence decreases too much, the generated samples
arelikely to suffer from low diversity®>. To prevent KL-vanishing and to
allow effective manipulation of theimpact of KL-divergence, a nonlin-
ear proportional-integral-derivative controller was implemented to
automatically tune the weight of KL-divergence in the VAE objectives

throughout training. The KL-divergence weight y(t) is calculated
through afeedback control defined as:

t
Vo) = Kpe(t) + Ki/ e(t)dr + Ky @
0 de

e(t)istheerror between actual and expected value at time ¢. K, K;and
K, are the coefficients for the proportional, integral and derivative
terms, respectively. See details in ref. 63.

Bottleneck encoder
To refine the global representation, the bottleneck attention module
was used. This special attention module is defined as:

B (H;8) = MultiHead (¢,K, V)

where the keys K (size T x d) and values V (size T x d) are transformed
from the output hidden representations of the pre-trained language
model H(T x d). The parameter § includes the weights for transforma-
tion of the query, keys and values. During training, the pre-trained
language model stays frozen, and only the parameter § is learned.

Restricted by the length of hexon, only limited pre-trained lan-
guage models are available. ProtBert (420 million parameters)*’ was
chosen as the pre-trained protein language model, as (1) it is trained
withalength limit of2,048 amino acids and (2) itachieved better results
on downstream tasks than two other models trained on long protein
sequences. Inbrief, the ProtBert used in ProteinVAE contains 30 layers,
and it was trained for 300,000 steps on sequences shorter than 512
amino acids, then for an additional 100,000 steps on sequences with
amaximum length of 2,000 (ref. 30).

Non-autoregressive decoder

Asmentionedintheintroduction, the hypothesis was that the protein
sequence canbebetter modelled withanon-autoregressive processing
approach. Thus, inspired by the HybridVAE model**, deconvolution
networks were used to perform upsampling. The deconvolutional
network increases the spatial size of the input, while decreasing the
number of hidden dimensions. Specifically, the deconvolutional net-
works consist of eight UpBlocks (Extended Data Fig.1). In each UpBlock,
alx1convolutionallayer transforms theinput to have alower number
of channels, which reduces the number of parameters needed; in the
next layer, a 3 x 3 deconvolutional layer upsamples the low-channel
input. To maintain the gradient, the output of each previous UpBlock
was concatenated as the input for the next block. Unlike HybridVAE,
the deconvolutional networks output Mwas not passed to arecurrent
neural network. Instead, a multi-head attention module was used to
captureboth short-andlong-range relationships. Next, the output was
converted tologits using alinear layer. Lastly, another amino-acid-wise
attention module was added to capture the amino acid usage prefer-
ence among different viruses®. As a comparison, classic autoregres-
sive processing was tested by replacing the deconvolutional networks
with a multi-layer long short-term memory (LSTM) recurrent neural
network®’. Both single direction and bidirectional LSTM models are
tested. LSTM hidden sizes are divided by 2 when testing bidirectional
LSTM. The hidden dimensions of the bottleneck representationzand
theupsampled decoder hiddenrepresentation M were kept the same.

ProteinVAE training

The ProteinVAE model was implemented with Pytorch v.1.12.1(ref. 65)
and Pytorch-lightning v.1.6.5 (ref. 66). Training was monitored with
wandb v.0.15.0 (ref. 67). The ProteinVAE model was trained on the
hexon dataset using negative ELBO loss. KL-divergence was dynami-
cally weighted using a proportional-integral-derivative controller
with expected KL-divergence of 0.5, K, of 0.01, K; of 0.0001 and K, of
0.001. Strand position was weighted to have 1.2x cross-entropy loss.
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The ProteinVAE model was optimized using the Adam optimizer®® with
alearningrate of 0.0005 and weight decay of 0.0001. Dropout rate of
0.3wasused. A one-cycle learning rate scheduler® was used with total
steps 8,000, percentage of the cycle (in number of steps) spentincreas-
ingthelearningrate wasset to 0.4 and theinitial learning rate was set to
1/20 of peaklearning rate. Decoder and encoder latent sizes were set to
128.Ineach ofthe eight decoder UpBlocks, upsampling was done after
input was transformed to 16 channels. Encoder bottleneck attention
has four heads. Decoder position-wise attention has two heads, and
the decoder amino-acid-wise attention also has two heads. To prevent
overfitting, the training was stopped with early stopping when valida-
tion cross-entropy loss had not improved in the last 250 epochs, and
the checkpoint with the highest test F1 (calculated with torchmetrics
v.0.8.1 (ref. 70)) was used for generation. The ProteinVAE model was
trained on an NVIDIA V100 GPU with 32 GB of memory.

ProteinVAE sequence generation

Generate samples for MD analysis and synthetic human AdV analy-
sis. For each of the top 13 clusters (90% identity, size >10), 50,000
sequences were generated with the mean of the respective cluster and
standard deviation of 3. Within each cluster, sequences more repetitive
than the most repetitive natural sequenceinthat cluster were filtered
out.Fortherest ofthesequences, eachoneis aligned against the whole
natural hexon dataset to get the percentage identity towards the clos-
est natural protein. A bin width of 2% was used to separate sequences
of different novelty. For the 17 bins with percentage identity from 60%
t0 92% (some bins are empty), the sequence with the highest APP was
selected for Alphafold2 structure prediction. APP was calculated as:

L
1
APP =T 2, max Py

where p;is the predicted probability of amino acid/ (including aspecial
token ‘-’ representing a gap in sequence) at the ith position. L is the
maximum length of training sequences. Predicted local-distance dif-
ference test (pLDDT) threshold was not benchmarked, because there
are experimental structures for only five human adenovirus hexons,
and four non-human adenovirus hexons. Instead, the threshold was
set at 85% (higher than the general recommended value of 70%) to
obtainmoreaccurate structures. Intotal, 102 structures with anaverage
pLDDT score of higher than 85% were selected for molecular dynamic
analysis. Constructs are named as c;_;, where irepresents the ith cluster
andj signifies the jth bin.

All other samples are generated following this procedure. To
achieve abalance between diversity and quality, a larger batch of vec-
tors were sampled with a higher standard deviation, and only high
quality sequences were selected. Seven thousand vectors were sampled
from a normal distribution with mean of O and standard deviation of
4 and decoded to new sequences. To maintain high sequence quality,
sequences were ranked according to APP, and we selected the top ;
sequences for downstream analysis.

MSA entropy

Clustal Omegav.1.2.4 (ref. 71) was used to calculate MSA for the entire
natural hexon dataset mixed with an equal number of generated
sequences. Columns with more than 80% gaps in either the natural
or generated dataset were removed. Shannon entropy within each
columnwas calculated as:

20
SE = — 3" p(x;)log,,p(x;)

i=1

where p(x)) is the frequency of amino acid i in each column. Pearson
correlation was calculated between valid entropy values of natural
and generated sequences.

Association measure for amino acid pairs

For any pair of amino acids a and b, the minimal proximity score and
the pair association metrics were calculated as described in the original
publication®. Distance between each occurrence of a at position x;
withits nearest occurrence of b at position y,was computed, and then
averaged across all occurrences of a:

1o
Pm (@)= 7 2 min, (b —yil

Toremove dependency onthe number of occurrences for different
amino acids, the position of a was fixed and b was randomly shuffled
(Rand(b) stands for a random array of positions for b). Mean
(Pm(a,Rand(b))) and standard deviation (Op,,(,rand(s))) Of the randomly
shuffled sequences (where position of b is shuffled, but position of a
is fixed) were calculated, and the minimal proximity score was normal-
ized to obtain the association score as described in the original
publication®,

Pm(a,b) — P, (a,Rand(b))

Z.(a,b) =
m(@5) Op,,(a.Rand(5))

For the score shown in Fig. 2, averaged association scores were
plotted for each group of sequences. A null value was assigned if a pair
of amino acids did not exist in asequence.

Sequence clustering and secondary structure analysis
Sequence clustering was done at different identity thresholds using
MMSeqs2 (release 24 February 2021)”%. For sequence homology detec-
tion, default MMseq2 settings were used to perform pairwise alignment
betweenall possible pairs of generated and natural sequencesintrain-
ing data. To assess the structural similarity, SPOT-1D (original release)*®
was used to predict three-state (helix, strand, coil) secondary structure
for allamino acids. For outlier detectionin secondary structure ratio,
given the sum of all three ratiosis 1, a bi-variate Gaussian distribution
was fitted only on the helix and strand percentage of natural hexons.
Mahalanobis distance (d)>”* was calculated between all generated
samples and the centre of bi-variate Gaussian distribution. Since @*
follows Chi-squared distribution, a critical value a = 0.05 was used to
determine the cut-off distance. Samples with the smallest Mahalanobis
distance and the smallest maximum seqlID were identified to form the
Pareto front”.

SASA analysis

Due to the high computational resource requirement, only a portion
of sequences were selected to calculate the SASA profile. In total, 100
natural sequences were randomly selected and folded to get the SASA
ofeachaminoacidinnaturalhexons. The100 sequences were randomly
selected from the1,000 ProteinVAE-generated sequences used in previ-
oussequence and structural pattern analysis as representatives. Struc-
tures were predicted with Alphafold v.2.0.0, and SASA was calculated
with FreeSASAv.2.1.0 (ref. 76). Since the number of an amino acid might
differ between the natural and generated samples, unpaired two-sided
Welch t-test was used to compare the mean SASA for eachaminoacid”.
A Pvalue smaller than a = 0.05 is classified as statistically different.
The t-test was implemented with Pingouin python library (v.0.5.2)"5.

Latent space clustering and interpolation
Tovisualize the latent space, principal component analysis” was used
toreducethe number of dimensions to 2. The ten biggest clusters (457
sequencesintotal) at 90% seqlD in natural hexon sequences were used
for plotting.

Forinterpolation, 1,000 points were linearly sampled between the
hidden vectors of adenovirus 2 hexon and adenovirus 5 hexon. Hidden
codeswere passed through adecodertogetthe predicted probabilities.
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At each position, the token with the highest logit was chosen, and
average positional probability was calculated as previously described.

As a control, direct interpolation between two sequences was
done, by sampling a Bernoulli random variable with a probability to
choose amino acid from adenovirus 2 hexon (1 - a probability from
adenovirus 5 hexon) ateach position. Intotal, 1,000 different a values
werelinearly selected from 0 to1. Ten sequences were sampled at each
a, resulting in 10,000 sequences in total. ProteinVAE was run on the
directly interpolated samples, and the predicted probabilities were
collected. The APPis calculated on probabilities for amino acidsin the
input sequence, instead of the amino acids with highest probability at
each position.

ProtGPT2fine-tuning and sampling

The ProtGPT2 model (original release) was fine-tuned on our training
data. Due to GPUmemory limitation, eight AMD MI50-32GB GPUs were
used in parallel, with a total effective batch size of 16. Learning rate
from 107 to 107® was tested with weight decay from 0 to 107 (Supple-
mentary Table 5). To prevent overfitting, the training was stopped with
early stopping when validation loss had not improved in the last ten
epochs, and the checkpoint with the lowest validation perplexity was
selected for evaluation. The model with the lowest test perplexity was
used for generation (learning rate: 103 weight decay: 0). The fine-tuned
model was prompted with ‘M’ at the start of the sentence, and top_k
sampling was used with the parameters as suggested in the original
publication (top_k: 950; repetition penalty:1.2)*. It was observed that
generation performance drastically worsened with inclusion of any
token with ‘X’, and all such tokens were removed. For the language
models, even after fine-tuning, ProtGPT2 tends to generate shorter
sequences without the minimal token criteria. To prevent generation
of short sequences, the range of tokens allowed in a sequence was set
to300-350, as seenintokenization of natural hexon sequences. Infer-
ence of 25sequences was repeated for 66 batches (1,650 sequencesin
total; ~12.5 mininference time), until 1,500 sequences within the length
range of hexon were accumulated. Sequences were ranked according
to their perplexity®’, and we kept only the top ; for comparison. To
accommodate downstream analysis, ‘Z” and ‘B’ found in Prot-
GPT2-generated sequences were replaced with appropriate standard
amino acids.

ProGen2 fine-tuning and sampling

The ProGen2-small model was fine-tuned on our training data. Other
larger ProGen2 models have drastically high GPU memory require-
ment; out of memory error would occur even with abatch size smaller
than 2 on a 32 GB GPU. Eight AMD MI50-32GB GPUs were used in
parallel for fine-tuning, with a total effective batch size of 48. Learn-
ingrate from 6 x10to 6 x 10 ® was tested with weight decay from O
to10°® (Supplementary Table 6). To prevent overfitting, the training
was stopped with early stopping when validation loss had not
improved inthelast ten epochs, and the checkpoint with the lowest
validation perplexity was selected for evaluation. The model with
the lowest test perplexity was used for generation (learning rate:
6 x107*; weight decay: 107™*). The fine-tuned model was prompted
with ‘M’ at the start of the sentence; nucleus sampling was used. Since
no generation parameter was suggested as optimal in the original
publication®, top_p (0.7-1.0) and temperature (0.2-1.0) were opti-
mized accordingto thelog-likelihood of generated sequences (Sup-
plementary Table 7). Top_p of 0.7 and a temperature of 0.4 were used
for the final generation. To generate sequences within the length
range, the maximum number of tokens allowed in a sequence was
set to 992. Inference of 20 sequences was repeated for 90 batches
(1,800 sequences in total; ~13.5 h inference time), until 1,500
sequences within the length range of hexon were accumulated.
Sequences were ranked according to their perplexity®®, and we kept
only the top ; for comparison.

ESM-IF1generation

Intotal, 100 natural hexons were randomly selected from the training
data, and their structures were predicted with Alphafold2 as described
above. There are only 20 hexon structures in the PDB database (col-
lected on30 August 2023), and many of the structures are for the same
reference human AdV5 hexon. The nine non-redundant sequence-
structure pairs were not sufficient for fine-tuning of ESM-IF1. Genera-
tion was also attempted, but compared with using the predicted
structures, sequence likelihood decreased. For both types of templates,
sampling temperatures were optimized (Supplementary Tables 8
and 9). Temperature of 0.1 was used in the final generation, as only
insubstantial improvements in likelihood were observed with lower
temperatures, while the diversity decreased drastically. For each com-
putationally obtained structure template, 15sequences were generated
with ESM-IF (original release). The 1,500 generated sequences were
ranked according to log-likelihood. As long repetition (for example,
EEEEEE) is a known failure mode™®, sequences with single-amino-acid
repetition longer than sixamino acids were filtered out. Repetition of
bi-gram or tri-gram (for example, KDKDKD) was also seen, and affected
sequences were removed. The top ; sequences were used for
comparison.

Molecular dynamics simulationsetup

ProteinVAE samples were selected as described in previous sections.
For comparison, sequences generated by ProtGPT2 and ProGen2 were
randomly chosenifthey exceeded 80%in both query and target cover-
age when aligned with the closest natural sequence and were within
the natural distribution of helix-to-strand ratio. To increase diversity,
samples were selected fromall 1,500 generated sequences. Fromeach
model, one generated sequence was randomly selected in each 3%
identity range from 70% to 100% (10 ranges; 8 ProGen2 sequences, 2
ranges were empty; 10 ProtGPT2 sequences).

Input structures were used to build the protein representation
using CHARMM-GUIv.3.8 online server®. Systems were solvated in an
explicit TIP3P (ref. 82) water box. Charge neutrality was maintained by
addition of counter ions, and physiological condition was mimicked
using 0.15 MKCI.

All systems were energy minimized using the steepest descent
before pre-equilibration phase, whichwas conducted for 500 ps under
the constant number of particles, volume and temperature condition.
Production phase was carried out for 100 ns. To ensure the stability, five
randomly selected systems including four variants and one wild type
were simulated foranother 200 ns (total of 300 ns) and theirr.m.s.d.and
r.m.s.f. values were compared with their 100 ns simulated structures.
Allfive systems showed negligible changesinr.m.s.d.and r.m.s.f.upon
simulation time extension (Supplementary Fig. 2). The particle-mesh
Ewald®*** method was used with a cut-offradius of 1.2 nm for long-range
electrostatic interactions. Heavy atom-hydrogen atom bonds were
constrained using the parallel linear constraint solver (P-LINCS) algo-
rithm®. The Nosé-Hoover thermostat®® with a coupling time constant
of 1 psand the Parrinello-Rahman barostat® with a coupling time con-
stant of 5 ps were used for the production phase. A reference coupling
pressure of 1 bar and acompressibility of 4.5 x 10~ bar ' were used. For
allsimulations, periodic boundary conditions were applied inall direc-
tions. Simulations were carried out using CHARMM36m force field*®
by GROMACS/2021.3 (ref. 89). Structure visualization (Extended Data
Fig.4) was done using Protein Imager v.0.5.60 (ref. 90).

Reporting summary
Furtherinformation onresearch designis available inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequences of all 711 natural hexons can be found at /data/hexon_711.
fastainthe CodeOcean capsule (https://doi.org/10.24433/C0.2530457.
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v2 (ref. 91)). All natural hexon sequences were downloaded from the
UniprotKB?** database. Source data are provided with this paper.

Code availability

The code is provided at https://doi.org/10.24433/C0.2530457.v2
(ref. 91). ProtBert is used for extracting embeddings, and its code can
beaccessed at https://huggingface.co/Rostlab/prot_bert.
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to be used as the queryin bottleneck attention. (b) Decoder CNNs used 8
UpBlocks to upsample the VAE latent vector length (equals 1) to maximal
sequence length. In each UpBlock, al x 1convolutional layer is used to transform

b ProteinVAE Decoder CNN
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" UpBlock
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UpBlock
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=m UpBlock
ConvTranspose1d, UpBlock

UpBlock

L \ 2
dCNN Z'
dde M

input to alower dimension, which reduces the number of parameters needed in
the following layer with large kernels. The dilated 3 x 3 deconvolutional layer with
stride of 2 is used to upsample the low-dimensional input. To prevent gradient
vanishing, the input is also passed through alinear layer to get an identity matrix
(T) of the same length as the deconvolutional output (U). The upsampled matrix
Uand theidentity matrix is then concatenated as the input for the following
UpBlock. The output of the final UpBlock is transformed to the decoder hidden
dimension with another 1 x 1 convolutional layer.
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Extended Data Fig. 2| Helix-to-strand Ratio in Sequences Generated by Base ProteinVAE model (n =1000). (c) helix-strand ratio from sequences generated
and Final version of ProteinVAE. (a) Natural hexon helix-strand ratio (n = 711). using the base version of ProteinVAE model (n =1000). Secondary structure state
(b) helix-strand ratio from sequences generated using the final version of was predicted from sequences directly using SPOT-1D.
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Extended Data Fig. 3| Hypervariable regions in Natural and ProteinVAE-generated Sequences. Sequence logo of all 7 hypervariable regions for MSA of natural
sequences and MSA of ProteinVAE generated sequences. As can be seen, both MSA have similar amino acid usage in majority of the columns.
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Bottom

Extended Data Fig. 4 | Molecular Dynamics Representative Structures. Each homotrimer. Column (a) is a wild-type structure. Columns (b-d) each display
column shows a hexon homotrimer from one hexon sequence. Side, top, and structure of a ProteinVAE generated sequence at 91.5%, 85.6%, 75.4% sequence
bottom views of all structures were shown in the first, second, and third row, identity with respect to their respective closest natural sequence.

respectively.Red, green, and blue colouring represent different subunits of the
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Extended Data Fig. 5| RMSD for Simulated Sequences. RMSD for all natural box-plot shows the first and third quartiles, central line is median, and whiskers

representative sequences, ProteinVAE generated sequences, ProGen2 generated show range of data with outliers are omitted for readability. For each sample, the

sequences (3 generated structures had structural clashes), and ProteinGPT2 RMSD value for every picosecond from 5 ns to 100 ns were analyzed (n = 950).

generated sequences (3 generated structures had structural clashes). Each
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Extended Data Fig. 6 | RMSF Aligned According to MSA with Gaps Preserved.

Top: Average RMSF for ProteinVAE generated sequences (blue) and natural
representative sequences (pink) Middle: Average RMSF for ProtGen2 generated

sequences (blue) and natural representative sequences (pink).

Bottom: Average

RMSF for ProtGPT2 generated sequences (blue) and natural representative

sequences (pink). ProtGen2 and ProtGPT2 generated sequences inserted long
fragments that are not homologous to any natural hexon. These fragments also
have increased flexibility which could reduce structure stability. Data in (a-c) are
presented as mean values +/-SD.
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Extended Data Fig. 7| Human AdV Classifier. (a) Receiver operating
characteristic (ROC) curve of latent human adenovirus hexon classifier. Area
under the ROC curve is 0.97. (b) Predicted human AdV hexon likelihood for all
sequences generated from each cluster. Sequences predicted to be human AdV
hexon were shown as ared dot, and predicted non-human AdV hexon were shown

asablue dot. Percentages of human AdV in corresponding natural sequences
were labeled as Nat HAd% in each cluster. Clusters with more than 90% natural
human AdV hexons were colored with a pink background. Predicted percentages
of human AdV for generated sequences were labeled as Gen_HAd%. Decision
threshold is shown as adashed red line.
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